期刊文献+

基于肤色和几何关系的人眼快速定位方法 被引量:1

Method on quickly Locating Eyes Based on Skin-color and Geometrical Relationship
下载PDF
导出
摘要 人眼检测是人脸检测与识别、驾驶员行为分析或MPEG4压缩中的关键技术,为了提高处理速度和检测结果的鲁棒性,提出了一种基于肤色检测和几何特征人眼快速定位方法;通过比较,选用YIQ空间和KL变换联合的方法检测肤色区域,然后运用面积阈值检测出备选人脸区域,并在备选人脸区域中通过灰度特征确定人脸特征区域的位置,并根据人眼的几何位置关系检测出其大致位置;通过对称性和相似性校验所得位置是否为真正的人眼位置,最后运用Hough变换确定人眼瞳孔中心的精确位置;试验表明,该方法操作简单,速度较快,能满足实时处理的要求,对不同的光照条件、姿态以及干扰背景具有较强的适应性。 Eye detection is a crucial aspect in many useful applications ranging from face recognition/detection to human computer interface, driver behavior analysis, or compression techniques like MPEG,t. This paper presents a robust and efficient eye detection and location algorithm for color images based on skin color and geometrical relationship of facial features. By comparison of pixel classification perform ance, the mixture of YIQ color space and KL transformation is chosen to classify skin color pixels from background. Face candidates are ex traeted by the threshold of connection range. Then some blocks of low gray intensity arc got by threshold related with the mean gray inten sity of skin color pixels. Finally, eyes are located through the geometrical relationship of facial features. The detected eyes are verified by the symmetry and comparability, and the fine location of iris is confirmed by Hough transformation. According to the experimental results, the presented method can easy locate the eyes and is quick to meet the requirement of real-time detection. It can adapt to different illumination conditions, poses and complex background.
出处 《计算机测量与控制》 CSCD 北大核心 2009年第3期539-542,共4页 Computer Measurement &Control
基金 国家自然科学基金资助项目(60675019)
关键词 肤色 几何关系 人脸检测 人眼定位 skin-color geometrical relationship face detection eye location
  • 相关文献

参考文献17

  • 1Talay A C. An Approach for Eye Detection Using Parallel Genetic Algorithm [J]. Lecture Notes im Computer Science. 2005, 3516, (1): 705-741, 1004-1007
  • 2Chellappa R, Wilson C L, Sirohey S. Human and machine recognition of faces: A survey [J]. Proc. IEEE. 1995, 83, (5): 705-741.
  • 3Yang M H, Krieginan D J, Ahuja N. Detecting faces in images: A survey [J]. IEEE Trans. on PAMI. 2002, 24 (1): 34-58.
  • 4Zhao Z Q, Huang D S, Sun B Y. Human face recognition based on multiple features using neural networks committee [J]. Pattern Recognition Letters, 2004, 25 (12): 1351-1358.
  • 5Yuille A L, Hallinan P W, Cohen D S. Feature extraction from faces using deformable template [J]. Int. J. Computer Vision, 1992, 8, (2): 99-111.
  • 6Pentland A, Moghanddam B, Starner T. View-based and modular cigenspaces for face recognition [A]. IEEE conference on CVPR, Seattle [C]. 1994. 84-91.
  • 7Bruneli R, Poggio T. Face recognition: features versus templates [J]. IEEE Trans. On PAMI. 1993, 15 (10): 1042-1052
  • 8Beymer D J. Face recognition under varying pose [A]. Proc. of IEEE conference on CVPR [C]. Seattle, 1994, 756-761.
  • 9姜军,张桂林.一种基于知识的快速人脸检测方法[J].中国图象图形学报(A辑),2002,7(1):6-10. 被引量:41
  • 10张杰,杨晓飞,赵瑞莲.基于Hough变换圆检测的人眼精确定位方法[J].计算机工程与应用,2005,41(27):43-44. 被引量:36

二级参考文献61

  • 1刘兵,司秉玉.基于图像区域搜索法的彩色球目标识别与跟踪[J].仪器仪表学报,2003,24(z1):225-226. 被引量:40
  • 2刘明宝,高文.复杂背景下的人脸检测与跟踪系统[J].计算机研究与发展,1997,34(S1):61-65. 被引量:3
  • 3章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 4彭辉,张长水,荣钢,边肇祺.基于K-L变换的人脸自动识别方法[J].清华大学学报(自然科学版),1997,37(3):67-70. 被引量:69
  • 5Bala L P,http://wwwvisionpearlsde/WWW/download/framedowhtml,1997年
  • 6R Brunelli,T Poggio.Face recognition:features versus.templates [J].IEEE Trans,1993,PAMI-15(10):1042-1052.
  • 7M Turk,A Pentland.Eigenfaces for recognition [J].Journal of Cognitive Neuroscience,1991,3(1):71-86.
  • 8H A Rowley,S Baluja,T Kanade.Neural network-based face detection [J].IEEE Trans,1998,PAMI-20(1):23-38.
  • 9P Juell,R Marsh.A Hierarchical neural network for human face detection [J].Pattern Recognition,1996,29(5):781-787.
  • 10K Sobottka,I Pitas.A novel method for automatic face segmentation,facial feature extraction and tracking [J].Signal processing:image communication,1998,12(3):263-281.

共引文献201

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部