期刊文献+

时空混沌保密通信系统的微扰攻击法 被引量:2

Slight perturbation attack on spatiotemporal chaotic cryptosystem
下载PDF
导出
摘要 研究了基于时空混沌的保密通信系统的安全性问题。此类系统在常数驱动下,高维的接收机系统将收敛至一维,使得系统对叠加于常数驱动上的微小扰动不敏感。基于此缺陷,提出了一种微扰攻击方法:选择一个常数驱动,使得系统被控制到均匀的目标态,然后在常数驱动上叠加一个微小的扰动,使得系统重新收敛后的状态与扰动前的目标态之间的距离保持在微小的范围内,使得系统取整取模的作用失效,暴露出系统的状态变量,从而可以用较小的计算代价获得密钥。 The security problems of spatiotemporally chaotic cryptosystem are studied. This kind of systems has the weakness that the high dimensional receiver degenerates to be one-dimensional under constant driving, therefore, is no more sensitive to the slight perturbation on the driving after convergence. Based on this weakness, a slight perturbatioin attack method is proposed: choosing a constant driving, thus the receiver systm degenerates to uniform object state; adding a slight perturbation to the constant driving, and making the distance between pre-perturbation state and post-perturbation state in a small extent. This attack disabled the effects of INT and MOD operations and exposed the state variables. The experimental results show that this method can successfully get the key to some precision with relatively small computation cost.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2009年第3期677-680,共4页 Systems Engineering and Electronics
基金 国家自然科学基金资助课题(10272113)
关键词 时空混沌 混沌同步 混沌密码学 安全分析 spatiotemporal chaos chaos synchronization chaotic cryptography security analysis
  • 相关文献

参考文献3

二级参考文献35

  • 1金晨辉,高海英.对两个基于混沌的序列密码算法的分析[J].电子学报,2004,32(7):1066-1070. 被引量:28
  • 2[1]Ott E, Grebogi C, Yorke J A. Controlling chaos[J]. Phys Rev Lett, 1990, 64:1196
  • 3[2]Auerbanch D. Controlling extended systems of chaotic elements[J]. Phys Rev Lett, 1994, 72:1184
  • 4[3]de Sousa Vieira M, Lichtenberg A J. Controlling chaos using nonlinear feedback with delay[J]. Phys Rev, 1996, E54:1200
  • 5[4]Konishi K, Kokame H. Control of chaotic systems using an on-line trained linear neural controller[J].Physica, 1997, D100: 423
  • 6[5]Hu Gang, Qu Zhilin. Controlling spatiotemporal chaos in coupled map lattices systems[J]. Phys Rev Lett, 1994, 72:68
  • 7[6]Kwon Y S, Ham S W, Lee K K. Analysis of minimal pinning density for controlling spatiotemporal chaos of a coupled map lattice[J]. Phys Rev, 1997, E55:2009
  • 8[7]Parmanada P, Yu Jiang. Controlling localized spatiotemporal chaos in a one-dimensional coupled map lattice[J]. Phys Lett, 1997, A231:159
  • 9[8]Grigoriev R O, Cross M C, Schuster H G. Pinning control of spatiotemporal chaos[J]. Phys Rev Lett,1997, 79:2795
  • 10[9]Parmanada P, Hildebrand M, Eiswirth M. Controlling turbulence in coupled map lattice system using feedback techniques[J]. Phys Rev, 1997, E56:239

共引文献3

同被引文献11

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部