期刊文献+

双框架控制力矩陀螺奇异分析及可视化 被引量:2

Singularity Analysis and Visualization of Double-Gimbaled Control Moment Gyro Systems
下载PDF
导出
摘要 研究双框架控制力矩陀螺(DGCMG)的几何奇异问题。利用空间几何方法建立三正交构型DGCMG的几何模型及力矩输出的微分动力学模型,在此基础上严格推导系统奇异的几何判别条件,获得角动量空间中的奇点分布并仿真给出角动量奇点分布的可视化结果。使用ε-δ语言精确定义显、隐奇点及空转。根据奇点处模型泰勒展开推出工程可用的空转判别条件。利用数学中连续性概念,严格证明内奇点必是显奇点。 This paper examines the singularity problem inherent to redundant double-gimbaled control moment gyro (DGCMG) systems. Firstly geometric model and torque-exporting model of perpendicularity mounting arrangement of three DGCMGs were founded by the way of space geometry. Secondly geometric singularity condition and singular points distribution in angle momentum space were developed. The simulation characterize and visualize the singularities. Thirdly hyperbolic singularity and elliptic singularity and null motion were defined with ε -δ language. Null motion condition was found based on singularity expanding in a Taylor series. Finally the conclusion that inner singularity must be elliptic singularity was strictly proved using continuity concept in advanced mathematics.
作者 王磊 赵育善
出处 《宇航学报》 EI CAS CSCD 北大核心 2009年第2期613-619,共7页 Journal of Astronautics
关键词 双框架控制力矩陀螺 奇异 空转 奇点分布 可视化 Double-gimbaled control moment gyro Singularity Null motion Singular points distribution Visualization
  • 相关文献

参考文献7

  • 1Margulies G, Aubrun J N. Geometric theory of single-gimbal control moment gyro systems [ J ]. Journal of the Astronautical Sciences, 1978, 26(2) : 159 -191.
  • 2Marc Meffe. Control Moment Gyroscope Configurations for the Space Station [ R ]. AAS - 88 - 040, 1988.
  • 3Jose A D, Bong Wie. Computation and Visualization of Controlmoment Gyroscope Singularities[ R ]. AIAA - 2002 - 4570, 2002.
  • 4Bong Wie. Singularity Analysis and Visualization of Single-Gimbal Control Moment Gyro Systems[ R ]. AIAA - 2003 - 5678, 2003.
  • 5Kennel H F. Steering Law for Parallel Mounted Double-Gimbaled Control Moment Gyros[ R] , NASA TM -82390, 1981.
  • 6Tsuneo Yoshikawa. A Steering Law for Three Double-Gimbal Control Moment Gyro Systems[R]. NASA TM - X -64926, 1975.
  • 7吴忠,丑武胜.单框架控制力矩陀螺系统的运动奇异及回避[J].北京航空航天大学学报,2003,29(7):579-582. 被引量:3

二级参考文献8

  • 1Tokar E N, Platonov V N. Singular surfaces in unsupported gyrodyne systems[J]. Cosmic Research, 1979, 16(5):547 ~ 555.
  • 2Tokar E N. Problems of gyroscopic stabilizer control[J]. Cosmic Research, 1978, 15(2) : 141 ~ 147.
  • 3Tokar E N, Legostaev V P, Mikhailov M V, et al. Control of redundant gyroforce systems[J]. Cosmic Research, 1980, 18(2):115 ~ 123.
  • 4Kurokawa H. Geometrical view to steering of the pyramid type CMG system[ A]. In: Proceedings of the 18th International Space Technology Symposium[C], 1992. 1050 ~ 1057.
  • 5Kurokawa H. Exact singularity avoidance control of the pyramid type CMG system [ A ]. In : Scottsdale A Z, ed. Proceedings of AIAA Guidance, Navigation, and Control Conference [ C ]. Washington DC: AIAA, 1994. 170~ 180.
  • 6Bedrossian N S, Paradiso J, Bergmann E V, et al. Redundant single gimbal control moment gyroscope singularity analysis[J]. Journal of Guidance, Control and Dynamics, 1990, 13(6) : 1096 ~ 1101.
  • 7Margulies G, Aubrun J N. Geometric theory of single-gimbal control moment gyro systems [ J ]. The Journal of Astronautical Sciences,1978, 26(2) : 159 ~ 191.
  • 8Slotine J-J E, Li W P. Applied nonlinear control[M]. Prentice-Hall Inc, 1991.40 ~ 99.

共引文献2

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部