期刊文献+

采用增量关联规则挖掘提高电子病历系统的用户体验度 被引量:3

A Method to Enhance User Experience of EMR Based on Mining Association Rules of Incremental Updating Data
下载PDF
导出
摘要 该文针对电子病历系统的用户体验度不高的问题,首先用模板和文本特征化的方法对电子病历中的事务数据实现结构化;再基于增量关联规则挖掘算法对产生的结构数据进行关联规则挖掘,找出模板中各个元素的关联以及对应元素取值之间的关联,最后根据挖掘结果来指导用户的输入,从而有效提高了电子病历系统的用户体验度。 The user experience (EX) of current Electronic Medical Record systems (EMR) is needed to improve. This paper proposed a new method to enhance EX of EMR. Firstly, system template and text characterization are used to make the EMR data structured. Then, the structured date are mined based on mining the association rules of incremental updating data to find the association of the elements of template of EMR and the values of elements. Finally, with the help of mined results, the users of EMR are able to input data effectively and quickly.
出处 《中国医疗器械杂志》 2009年第2期83-86,149,共5页 Chinese Journal of Medical Instrumentation
基金 安微省2007年度重点科研计划项目(0702030077)
关键词 电子病历 增量关联规则 数据挖掘 用户体验度 EMR, association rules of incremental updating data, data mining, user experience
  • 相关文献

参考文献10

二级参考文献33

  • 1牛小飞,石冰,卢军,吴科.挖掘关联规则的高效ABM算法[J].计算机工程,2004,30(11):118-120. 被引量:16
  • 2Xiu-LiMa,Yun-HaiTong,Shi-WeiTang,Dong-QingYang.Efficient Incremental Maintenance of Frequent Patterns with FP-Tree[J].Journal of Computer Science & Technology,2004,19(6):876-884. 被引量:9
  • 3刘乃丽,李玉忱,马磊.一种有效且无冗余的快速关联规则挖掘算法[J].计算机应用,2005,25(6):1396-1397. 被引量:7
  • 4黄建设.一种改进的关联规则算法探讨[J].计算机仿真,2005,22(12):72-75. 被引量:6
  • 5牛小飞,刘浩,牛学东,刘秀婷.基于矩阵的关联规则增量更新算法[J].计算机工程与应用,2006,42(21):169-171. 被引量:5
  • 6Cheung D W,Han Jiawei,Ng V,et al.Maintenance of discovered association roles in large database:an incremental updating technique[C]//Proceeding of 12th International Conference on DataEngineering,New Orleans,Louisana, 1996:106-114.
  • 7Cheung D,LEE S,Kao B.A general incremental technique for maintaining discovered association rules[C]//Proceedings of the 5th International Conference on Database Systems for Advanced Applications, Melbourne, Australia, 1997 : 185-194.
  • 8Tan Pang-Ning.Introduction to Data Mining:数据挖掘导论[M].范明,范宏建,译.北京:人民邮电出版社,2006:202-205.
  • 9Pei J, Han J, Lu H, Nishio S, Tang S, Yang D. H-Mine:Hyper-structure mining of frequent patterns in large databases. In Proc. 2001 Int. Conf. Data Mining,San Jose, CA, USA, Nov.29-Dec.2, 2001, pp.441-448.
  • 10Tseng F, Hsu C. Generating frequent patterns with the Frequent Pattern List. Lecture Notes in Artificial Intelligence 2035, Cheung D, Williams G J, Li Q (eds.),Springer-Verlag, 2001, pp.376-386.

共引文献267

同被引文献23

  • 1Cheung DW,Han Jiawei,Ng V.Maintenance of discovered association rules in large database:an incremental updating technique[C]. Proceedings of the Twelfth International Conference on Data Engineering.Washington,DC:IEEE Computer Society,1996.
  • 2Cheung D,LEE S,Kao B.A general incremental technique for maintaining discovered association rules[C]. Proceedings of the Fifth International Conference on Database Systems for Advanced Applications.Sydney:World Scientific Press,1997.
  • 3Leung KC,Khan QI,Hoque TC.CanTree:A Tree Structure for Efficient Incremental Mining of Frequent Pattems[C]. Data Mining,Filch IEEE International Conference on.New Orleans:IEEE Computer Society,2005.
  • 4谢栋梁.电子病历初探.医学信息,2010,:1781-1782.
  • 5Wright Adam,Chen Elizabeth S,Maloney Francine L.An auto-mated technique for identifying associations between medications,laboratory results and problems[J].Journal of biomedical informatics,2010,43(6):891-901.
  • 6范明 孟小峰.数据挖掘:概念与技术[M].北京:机械工业出版社,2001..
  • 7范明,孟小峰.数据挖掘概念与技术[M].北京:机械工业出版社,2007:195-196
  • 8丁卫平,管致锦,施诠,陈建平.电子病历挖掘:概念、技术及应用[J].计算机工程与设计,2008,29(2):405-407. 被引量:11
  • 9倪志伟,高雅卓,李伟东,束建华.基于矩阵的增量式关联规则挖掘算法[J].计算机工程与应用,2008,44(13):153-155. 被引量:16
  • 10王欣萍,李燕.数据挖掘技术于医学电子病历系统的应用[J].现代预防医学,2008,35(13):2450-2451. 被引量:9

引证文献3

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部