期刊文献+

功能单体结构对口腔正畸胶粘剂性能的影响 被引量:3

Influence of functional monomer structure on performance of orthodontics adhesive
下载PDF
导出
摘要 制备了一种口腔正畸胶粘剂,并研究了功能单体结构对其性能的影响。功能单体二甲基丙烯酸乙氧基均苯四甲酸酯(PMDM)结构中含有双甲基丙烯酸酯可聚合基团、双粘接性羧基及强极性羟基基团。研究结果表明,随着PMDM含量的增加,羧基浓度增加,胶粘剂的粘接强度也随之增大;当w(PMDM)=10%时,剪切强度达最大值(20.81MPa);与传统功能单体4-甲基丙烯酰氧乙基偏苯三酸酐(4-META)相比,PMDM的优点是可以通过聚合基团引发交联反应,并且易溶于基质树脂中,从而减少了稀释剂的用量,胶粘剂固化物的硬度提高至90.37N/mm2;PMDM中的极性基团可与填料羟基磷灰石(HAP)中的羟基形成次价键,从而提高了基质树脂与HAP的界面粘接力,使胶粘剂与牙釉质之间的破坏方式为粘接破坏,有利于正畸托槽的摘除。 A dental orthodontics adhesive was prepared,and the influences of functional monomer structure on performance of orthodontics adhesive were investigated. The pyromellitic dimethacrylate(PMDM) was used as a functional monomer which contains dimethacrylate polymeric groups,double cohesiveness carboxyl groups and strong polar hydroxyl groups. The research results showed that the bonding strength of orthodontics adhesive was increased with increase of PMDM content or carboxyl consistence, the maximal shear strength was 20.81 MPa when mass fraction of PMDM was 10%. Comparing with the conventional monofunctional methacrylate monomer 4-META,PMDM can trigger crosslink reaction through polymeric groups and can easily be dissolved in the matrix resin,so thinner content was reduced and hardness of adhesive was increased to 90.37 N/mm^2. The interface bonding strength between matrix resin and inorganic filler hydroxyapatite (HAP) could be improved because the secondary valence bond between polar groups in PMDM and hydroxyl in HAP was formed, so the breakage mode between adhesive and enamel was bonding breakage and it was propitious to extirpate orthodontics brackets.
出处 《中国胶粘剂》 CAS 北大核心 2009年第3期26-31,共6页 China Adhesives
关键词 口腔正畸 胶粘剂 功能单体结构 羟基磷灰石 dental orthodontics adhesive functional monomer structure hydroxyapatite
  • 相关文献

参考文献16

  • 1刘慧,刘炼,张春庆.口腔医用丙烯酸酯类粘接性单体的应用进展[C].大连:大连理工大学出版社,2005:50-56.
  • 2EWOLDSEN N,DEMKE R S. A review of orthodontic cements and adhesives[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2001,120 ( 1 ) : 45-48.
  • 3HEILIGER L,PODSZUN W,FINGER W. Derivatives of aromatic carboxylic acids from aromatic carboxylic acid anhydrides and hydroxy (meth)acrylates and formulations thereof:US,5 760 101[P]. 1998-06-02.
  • 4PODSZUN W, HEILIGER L, FINGER W, et al. Polymerizable aromatic carboxylic acids and carboxylic acid anhydrides with cyclic carbonate groups and formulations thereof: US, 5 808 104[P]. 1998-09-15.
  • 5CHANG J C,HURST T L,HART D A,et al. 4-META use in dentistry:A literature review[J]. The Journal of Prosthetic Dentistry, 2002,87 (2) : 216-224.
  • 6许乾慰,姚畅旺,葛永静.单组分可见光固化齿科正畸粘接剂力学性能研究[J].化学推进剂与高分子材料,2007,5(2):55-59. 被引量:6
  • 7FARAHANI M,JOHNSTON A D,BOWEN R L. The effect of catalyst structure on the synthesis of a dental restorative monomer[J]. Journal of Dental Research, 1991,70(1) :67-71.
  • 8ISO 4 049-2000, Dentistry polymer-based filling, restorative and luting materials[S].
  • 9YY0269-1995,牙科学--牙釉质粘合树脂[S].
  • 10YY1042-2003,牙科学--聚合物基充填、修复和粘固材料[S].

二级参考文献7

  • 1管利民,陈治清,刘小青,邱静.四种正畸粘接剂的粘接性能研究[J].华西口腔医学杂志,1996,14(3):192-194. 被引量:6
  • 2Iwao Ikejima, Rie Nomoto, John F McCabe. Shear punch strength and flexural strength of model composites with varying filler volume fraction, particle size and silanation [J].Dental Materials, 2003, 19:206-211.
  • 3Norbert Moszner, Ulrich Salz. New developments of polymeric dental composites[J]. Prog Polym Sci, 2001, 26:535-576.
  • 4Norbert Moszner, Ulrich Salz, Jorg Zimmermann. Chemical aspects of self-etching enamel-dentin Adhesives: A systematic review[J]. Dental Materials, 2005, 21: 895-910.
  • 5何曼君.高分子物理(修订版)[M].上海:复旦大学出版社,2001.
  • 6Hui Lu, Jeffrey W Stansbury, Jun Nie. Development of highly reactive mono-(meth)acrylates as reactive diluents for dimethacrylate-based dental resin systems[J]. Biomaterials.2005, 1329-1336.
  • 7许立功 许立达.人牙釉质微孔结构的观察.国外医学:口腔医学分册,1975,2(6):260-261.

共引文献6

同被引文献53

  • 1李潇,朱光第,施长溪.医用复合树脂的新进展[J].国外医学(生物医学工程分册),2004,27(5):318-320. 被引量:12
  • 2刘慧,刘炼,张春庆.口腔医用丙烯酸酯类粘接性单体的应用进展[C].大连:大连理工大学出版社,2005:50-56.
  • 3Davidson C L, Feilzer A J. Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives[J]. J Dentistry, 1997,25(6) :435.
  • 4Shah M B, et al. R-curve behavior and micromechanisms of fracture in resin based dental restorative composites[J]. J Mechan Behav Biomed Mater, 2009,5 (2):502.
  • 5Barszczewska-Rybarek I M. Structure-property relationships in dimethacrylate networks based on Bis-GMA, UDMA and TEGDMA[J]. Dental Mater, 2009,25(9) : 1082.
  • 6Gauthier M A, Zhang Z, Zhu X X. New dental composites containing multimethacrylate derivatives of bile acids: A comparative study with commercial monomers[J]. ACS Appl Mater Interf, 2009,1 (4) : 824.
  • 7Osorio E, Osorio R, Davidenko N, et al. Polymerization kinetics and mechanical characterization of new formulations of light-cured dental sealants[J]. J Biomed Mater Res Part B: Appl Biomater, 2006,80(1): 18.
  • 8Moszner N, Fischer U K, Angermann J, et al. Bis-(acrylamide)s as new cross-linkers for resin-based composite restoratives[J]. Dental Mater, 2006,22(12): 1157.
  • 9Moszner N, Fischer U K, et al. A partially aromatic urethane dimethacrylate as a new substitute for Bis-GMA in restorative composites[J]. Dental Mater, 2008,24(5) : 694.
  • 10Baudin C, Osorio R, Toledano M, et al. Work of fracture of a composite resin: Fracture-toughening mechanisms[J]. J Biosmed Mater Res Part B: Appl Biomater, 2008,89A (3) : 751.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部