期刊文献+

基于遗传算法的开关磁阻电机T-S模糊模型 被引量:2

GA Based T-S Type Model of Switched Reluctance Motor
下载PDF
导出
摘要 开关磁阻电机(SRM)磁路高度饱和及双凸极结构使相绕组的磁链是转子位置和相电流的非线性函数。建立这一非线性映射是准确解算SRM特性的基础。采用Takagi-Sugeno(T-S)模糊逻辑来建立开关磁阻电机的非线性模型。所建模型具有结构简单、训练周期少、运算速度快、鲁棒性强的特点。为提高模型的精度,模型的参数应优化。但本模型目标函数的梯度信息很难得到,这样传统的基于梯度信息的优化方法很难被用来优化模型的参数,为此采用遗传算法来优化模型参数。遗传算法是一种并行、随机但直接进化最适合个体且不依赖计算局部导数来引导搜索过程的一种优化算法。模型输出数据与实测数据和泛化样本数据十分接近。仿真的电流波形与实测的电流波形很吻合,表明所建立的模型具有精度高、泛化能力强、运算速度快、鲁棒性强的特点。 Flux linkage of switch reluctance motor (SRM) is in nonlinear function of both rotor position and phase current. Establishing this nonlinear mapping is the basis to compute the mathematical equations of SRM accurately. In this paper, the Takagi-Sugeno (T-S) type fuzzy logic was employed to develop the nonlinear model of SRM. the T-S type fuzzy logic had a simple structure, less training epoch, fast computational speed and a property of robustness. In order to get a high precision, the parameters should be optimized. In this paper, genetic algorithm (GA) was used to optimize the parameters of the proposed model. GA is an optimization technique that performs a parallel, stochastic, but directed search to evolve the most fit population, but not relay on computing local derivatives to guide the search process. Compared with the training data and generalization test data, the output data of the developed model were in good agreement with those data. The simulated current wave was also in good agreement with the measured current wave. This proved that the model developed in this paper had high accuracy, strong generalization ability, fast computational speed and characteristic of robustness.
作者 修杰
出处 《微电机》 北大核心 2009年第3期27-31,共5页 Micromotors
关键词 开关磁阻电机 T—S模糊模型 遗传算法 测量 仿真 Switched reluctance motor T-S type fuzzy model Genetic algorithm Test Simulation
  • 相关文献

参考文献11

  • 1P. T. Lawrenson. Variable-speed Switched Reluctance Motors [J]. IEE Proc., 1980, 127(B): 253-265.
  • 2J. Corda. Linear Analysis of Switched Reluctance Motor [ C ]. ICEM, 1984, 1: 281-284.
  • 3GiuseppeS. Buja, Mm'aI. Valla. Control Characteristicsofthe SRM Drives. PART Ⅱ: Operation in the Saturated Region [ J ]. IEEE Transactions on Industrial Electronics, 1994, 41 : 316-325.
  • 4Valdan Vujicic, Slobodan N. Vukosavic. A Simple Nonlinear Model of the Switched Reluctance Motor[ J]. IEEE Transactions on energy conversion, 2000, 15: 395-400.
  • 5F. R. Salmasi, B. Fahimi, Magnetics. Modeling Switched-reluctance Machines by De-composition of Double Magnetic Saliencies [ J ]. IEEE Transactions on Magnetics, 2004, 40: 1556-1561.
  • 6D. A. Torry, J. H. Lang. Modelling a Nonlinear Variable-reluctance Motor Drive [ J ]. IEE Proc. , 1990, 137 (B) : 314-326.
  • 7C. Elmas. Modeling of a Nonlinear Switched Reluctance Drive Based on Artificial Neural Networks [ C ]. Power Electronics and Variable Speed Drives, IEE Conference Publication, 1994, 339 : 7-12.
  • 8S. S. Ramamurthy, R. M. Schupbach, J. C. Balda. Artificial Neural Networks Based Models for the Multiply Excited Switched Reluctance Motor[ C ]. Sixteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2001, 2 : 1109-1115.
  • 9Yi-Sheng Zhou, Lin-Ying Lai. Optimal Design for Fuzzy Controllers by Genetic Algorithms [ J ]. IEEE Transactions on Industry Applications, 2000, 36( 1 ) : 93-97.
  • 10Jian-Xin Xu, Sanjib Kumar Panda, Qing Zheng. Multiobjective Optimization of Current Waveforms for Switched Reluctance Motors by Genetic Algorithm[ C ]. Proceedings of the 2002 Congress on Evolutionary Computation, 2002, 2 : 1860-1865.

共引文献5

同被引文献23

  • 1张立勋,董玉红,王怀军.基于半物理仿真技术的机电伺服系统模型辨识研究[J].机电一体化,2006,12(2):30-32. 被引量:14
  • 2李振福,杨忠振.模糊可拓层次分析法研究[J].上海海事大学学报,2006,27(3):71-75. 被引量:19
  • 3王立新.模糊系统与模糊控制[M].北京:清华大学出版社,2003..
  • 4MOUSAZADEH H, KEYHANI A, JAVADI A. A review of principle and sun-tracking methods for maximizing solar systems output [ J ]. Renewable and Sustainable Energy Reviews, 2009,13(8) : 1800- 1818.
  • 5LEE C Y, CHOU P C, CHIANG C M, et al. Sun tracking systems : a review [ J ]. Sensors, 2009,9 (5) : 3875 - 3890.
  • 6ROTH P, GEORGIEV A, BOUDINOV H. Cheap two-axis sun following device [ J ]. Energy Conversion and Management, 2005,46(7 - 8) : 1179 - 1192.
  • 7GEORGIEV A, ROTH P, OLIVARES A. Sun following system adjustment at the UTFSM [ J ]. Energy Conversion and Management, 2004,45( 11 - 12) : 1795 - 1806.
  • 8TAKAGI T, SUGENO M. Fuzzy identification of systems and its applications to modeling and control [ J ]. IEEE Transactions on Systems Man and Cybernetics, 1985, 15 (1): 116-132.
  • 9BLANCO-MURIEL M, ALARCON-PADILLA D C, LOPEZ-MORATALLA T, et al. Computing the solar vector [JJ. Solar Energy, 2001,70(5) : 431 -441.
  • 10林立,梁岗.基于Simulink的交流变频调速系统建模与仿真[J].上海海事大学学报,2007,28(3):33-37. 被引量:5

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部