期刊文献+

基于新的网格存优策略的多目标归档算法

EMO archive algorithm using new grid-based elitist-reserving strategy
下载PDF
导出
摘要 网格方法被多个进化算法用来保持解集的分布性。基于ε支配概念的ε-MOEA本质上也是基于网格策略的。虽然ε-MOEA通常情况下都能在算法性能的各方面之间取得较为合理的折衷,但是由于其存在固有缺陷,很多时候表现出不容忽视的问题——当PFtrue对某一维的变化率在该维不同区域的差异较大时,解集中边界个体或代表性个体丢失——严重影响解集的分布性。针对这一问题,定义了一种新的δ支配概念和虚拟"最优点"的概念,提出了一种新的网格存优策略,并将之应用于更新进化多目标归档算法的归档集。实验结果显示,基于新的存优策略的进化多目标归档算法(δ-MOEA)具有良好的性能,尤其在分布性方面比NSGA2和ε-MOEA好得多。 Grid-based measure is commonly used to maintain diversity in many MOEAs.The ε-MOEA,which is based on the ε- dominance concept,is essentially based on grid-strategy.Though Often gaining an appropriate tradeoff between the aspects of the performance,the ε-MOEA has its inherent vice and behaves unacceptably sometimes.That is,when the slope to one dimension of the PFtrue changes a lot along it,the algorithm loses many extreme or representative individuals,which has a severely influence on the diversity of the solution set.In order to solve this problem,a new δ-dominance concept and suppositional optimum point concept is defined,then a new grid-based elitist-reserving strategy is proposed,finally it is applied in an EMO archive algorithm(δ-MOEA).The experimental results illustrate δ-MOEA's good performance,which is much better especially at the diversity than NSGA2 and ε-MOEA.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第2期55-60,130,共7页 Computer Engineering and Applications
基金 国家自然科学基金No.60773047 国家高技术研究发展计划(863)No.2001AA114060 教育部留学回国人员科研启动基金No.教外司留[2005]546号 湖南省自然科学基金No.05JJ30125 湖南省教育厅重点科研项目(No.06A074)~~
关键词 网格 归档集 ε支配 δ支配 虚拟“最优点” 网格存优策略 δ-MOEA grid archive set ε-dominance δ-dominance suppositional optimum point grid-based elitist-reserving strategy δ-MOEA
  • 相关文献

参考文献17

  • 1Deb K.Multi-objective optimization using evolutionary algorithms[M].Chichester,UK:John Wiley & Sens,2001.
  • 2谢涛,陈火旺,康立山.多目标优化的演化算法[J].计算机学报,2003,26(8):997-1003. 被引量:126
  • 3Deb K,Mohan M,Mishra S.A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal solutions,2003002[R].KanGAL Report,2003.
  • 4Laumanns M,Thiele L,Deb K,et al.Combining canvergence and diversity in evolutionary multi-objective optimization[J].Evolutionary Computation,2002,10(3):263-282.
  • 5Coello Coello C A.Guest editorial:spocial issue on evolutionary muhi-objective optimization[J].IEEE Transactions on Evolutionary Computation,2003,7(2):97-99.
  • 6周育人,闵华清,许孝元,李元香.多目标演化算法的收敛性研究[J].计算机学报,2004,27(10):1415-1421. 被引量:14
  • 7Knowles J D,Corne D.Praperties of an adaptive archiving algarithm for storing nondominated vectors[J].IEEE Transactions on Evolutionary Computation,2003,7(2):100-116.
  • 8Deb K,Amrit P,Sameer A,et al.A fast and elitist mulyi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 9Schott J R.Fault tolerant design using single and multicriteria genetic algorithm optimization[D].Aeronauties and Astronautics,Massachusetts Institute of Technology,Cambridge,1995-05.
  • 10van Veldhuizen D A,Lamont G B.On measuring multiobjective evolutionary algorithm performance[C]//2000 Congress on Evolutionary Computation,2000,1:204-211.

二级参考文献51

  • 1Charnes A, Cooper W W. Management Models and Industrial Applications of Linear Programming, Volume 1. New York:John Wiley, 1961.
  • 2Ijiri Y. Management Goals and Accounting for Control. Amsterdan: North Holland, 1965.
  • 3Hajela P, Lin C Y. Genetic search strategies in multicriterion optimal design. Structural Optimization, 1992, 4 : 99 - 107.
  • 4Chen Y L, Liu C C. Multiobjective VAR planning using the goal-attainment method, IEE Proceedings on Generation,Transmission and Distribution, 1994,141 (3) :227 -232.
  • 5Coello C A C, Christiansen A D, Aguirre A H. Using a new GA- based multiobjective optimization technique for the design of robot arms. Robotica, 1998,16:401-414.
  • 6Fujita K, Hirokawa N, Akagi S, Kitamura S, Yokohata H.Multi-objective optimal design of automotive engine using genetic algorithm. In: Proceedings of DETC'98-ASME Design Engineering Technical Conferences, 1998.
  • 7Cvetkovic D, Parmee I C. Genetic algorithm-based multi-objective optimization and conceptual engineering design, Washington DC, 1999. 29-36.
  • 8Zitzler E, Thiele L. Multiobjective optimization using evolutionary algorithms-a comparative case study. In: Eiben A E.Back T, Schoenauer M, Schwefel H P eds. Parallel Problem Solving from Nature, Berlin, Germany: Springer, 1998. 292-301.
  • 9Knowles J, Corne D. The Pareto archived evolution strategy:A new baseline algorithm for multiobjective optimization. In:Proceedings of the 1999 Congress on Evolutionary Computation, Washington DC, 1999. 98-105.
  • 10Coello C A C, Christiansen A D. Two new GA- based methods for multiobjective optimization. Civil Engineering Systems,1998, 15(3) :207-243.

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部