期刊文献+

遥感影像仿射不变特征匹配的自动优化 被引量:3

Automatic Optimization for Affine Invariant Feature Matching on Remote Sensing Imagery
原文传递
导出
摘要 针对基于仿射不变特征的遥感影像匹配技术,提出了一种自动优化方法,以进一步提高匹配准确性。根据典型需求形成了两套优化实施方案,基于所提出的自动优化方法实现了相应具体算法。针对不同类型的多组影像,自动优化的效果与相应方案的预定目标一致,充分证明了本方法的有效性与适用性。 An automated optimization method for affine invariant feature matching on remote sensing imagery is proposed. The correct matching rate is developed as an evaluation criterion of the optimized processing for affine invariant feature matching, which guarantees the quality of the optimized processing and realizes automated processing. Overlap rate is calculated by projecting a local region onto the corresponding region based on homograhpy, upon which a correct matching rate is determined. For different purposes, two classical optimization solutions are introduced. The algorithm for each solution is implemented based on the proposed method. By using one stereo satellite image and two stereo aerial images with different types, the experiment indicates that the results of feature matching can be optimized automated and accurately by our method according to corresponding optimization solution.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2009年第4期418-422,共5页 Geomatics and Information Science of Wuhan University
基金 国家973计划资助项目(2006CB701300) 国家教育部高等学校博士学科点专项科研基金(20070284001)
关键词 仿射不变特征 特征匹配 RANSAC 自动优化 匹配正确率 affine invariant feature feature matching RANSAC automated optimization correct matching rate
  • 相关文献

参考文献12

  • 1朱庆,吴波,赵杰.基于自适应三角形约束的可靠影像匹配方法[J].计算机学报,2005,28(10):1734-1739. 被引量:16
  • 2Remondino F. Detectors and Descriptors for Photogrammetric Applications[C]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, Bonn, Germany, 2006.
  • 3Labe T, Forstner W. Automatic Relative Orientation of Images[C]. The 5th Turkish-German Joint Geodetic Days, Berlin, 2006.
  • 4李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:154
  • 5Hartley R, Zisserman A. Multiple View Geometry in Computer Vision[M]. Cambridge:Cambridge University Press, 2000.
  • 6Matas J, Chum O, Urban M, et al. Robust Wide Baseline Stereo from Maximally Stable Extremal Regions[J]. Image and Vision Computing, 2004, 22(10) : 761-767.
  • 7Tuytelaars T, Gool L Van. Matching Widely Sepa rated Views Based on Affine Invariant Regions[J]. International Journal of Computer Vision, 2004, 59 (1) : 61-85.
  • 8Mikolajczyk K, Schmid C. Scale & Affine Invariant Interest Point Detectors[J]. International Journal of Computer Vision,2004,60(1) : 63-86.
  • 9Mikolajczyk K, Tuytelaars T, Schmid C, et al. A Comparison of Affine Region Detectors[J]. International Journal of Computer Vision, 2005, 65(1/2) : 43-72.
  • 10Mikolajczyk K, Schmid C. A Performance Evaluation of Local Descriptors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1 615-1 630.

二级参考文献25

  • 1Heipke C.. Digital photogrammetric workstations: A review of the state-of-the-art for topographic applications. GIM International, 2001, 4(15): 35~37.
  • 2Heipke C.. Overview of image matching techniques. In: Proceedings of OEEPE Workshop on the Application of Digital Photogrammetric Workstations, Lausanne, Switzerland, 1996, Part Ⅲ.
  • 3Boufama B., Jin K.. Towards a fast and reliable dense matching method. In: Proceedings of Vision Interface 2002, Calgary, Canada, 2002, 178~185.
  • 4Lhuillier M., Quan L.. Robust dense matching using local and global geometric constraints. In: Proceedings of the 16th International Conference on Pattern Recognition, Barcelona, Spain, 2000, 1: 968~972.
  • 5Zhong Y., Zhang H.F.. Control points based semi-dense matching. In: Proceedings of the 5th Asian Conference on Computer Vision, Melbourne, Australia, 2002, 137~144.
  • 6Tuceryan M., Chorzempa T.. Relative sensitivity of a family of closest point graphs in computer vision applications. Pattern Recognition, 1991, (25): 361~373.
  • 7朱庆 吴波 万能 徐志祥 田一翔.具有良好重复性与信息量的立体影像点特征提取方法[J].电子学报,2005,11.
  • 8Zhang Z., Shan Y.. A progressive scheme for stereo matching. In: Proceedings of the ECCV Workshop SMILE2, Dublin, 2000, 1796~1803.
  • 9Pollard S., Porrill J., Mayhew J., Frisby J.. Disparity gradient, lipschitz continuity, and computing binocular correspondance. In: Faugeras O.D., Giralt G. eds.. Robotics Research: The Third International Symposium. MIT Press, 1986, 19~26.
  • 10Burt P.J., Julesz B.. A disparity gradient limit for binocular fusion. Science, 1980, 208(9): 615~617.

共引文献165

同被引文献30

  • 1甘田红,闫利.基于岭估计的三线阵CCD影像外方位元素去相关性方法研究[J].测绘通报,2007(3):19-22. 被引量:7
  • 2吕金建,文贡坚,李德仁,高峰.一种基于角点特征的图像自动配准方法[J].遥感技术与应用,2007,22(3):438-442. 被引量:7
  • 3VINCENT E T,FUA L P. A fast local descriptor for dense matching[C]//IEEE. IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA.. IEEE, 2008,4587673.
  • 4YANG J. The thin plate spline robust point matching (TPS- RPM) algorithm: A revisit[J]. Pattern Recognition Letters, 2011,32 : 910-918.
  • 5HE Z, WANG Q, YANG H. TOCSAC: Topology constraint sample consensus for fast and reliable feature correspondence[J]. Lecture Notes in Computer Science, 2009, 5876: 608- 618.
  • 6DAVID N, ENGELS C. Estimating global uncertainty in epipoloar geometry for vehicle-mounted cameras [C]// GERHART G R. Unmanned Systems Technology VIII. SanDiego, USA: SHE, 2006 : 277-786.
  • 7ANDREA A, EMANUELE R, ANDREA T. Imposing semi-local geometric constraints for accurate correspondenc- es selection in structure from motion:a game-theoretic per- spective[J]. International Journal of Computer Vision, 2011,24 : 432-4354.
  • 8LI J, NIGEL M. A comprehensive review of current local features for computer vision[J]. Neurocomputing, 2008 (71) : 1771-1787.
  • 9YANG S, LI X J. Accelerating matching based on improved SIFT for selenograph[C]//YIN Z X. The 3^rd International Conference on Computer Design and Applications. Xi'an, China : IEEE, 2011,530-533.
  • 10高健,黄心汉,彭刚,王敏,吴祖玉.基于彩色的SIFT特征点提取与匹配[J].计算机工程与应用,2007,43(34):10-12. 被引量:8

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部