期刊文献+

基于自适应粒子滤波的跳水运动视频跟踪算法 被引量:2

A Video Tracking Algorithm for Diving Based on Adaptive Particle Filtering
下载PDF
导出
摘要 用传统粒子滤波算法对跳水运动视频跟踪存在两个突出问题:观测模型不能适应运动员身体的表观变化;运动模型不能准确预测运动员位置的快速改变。针对这两个问题,本文提出一种自适应粒子滤波算法。该算法在粒子滤波框架下引入一种自适应观测模型,并且根据跟踪误差与运动员动作改变幅度的大小,自适应选择噪声方差和粒子数量。实验结果表明,本文算法比传统粒子滤波算法具有更低的跟踪误差率,而且在运动员动作改变幅度变大时有更好的鲁棒性。 Video tracking of diving with the original particle filtering aglorithms remain two major problems. First the observation model can not adapt to the changes of athlete body appearance. Second the fixed noise variance in the kinematics model usually leads to a failure to predict the rapid changes of the athlete location. We propose an adaptive particle filtering algorithm to tackle these problems. This algorithm introduces an adaptive observation model under the particle filtering framework, and adaptively chooses the noise variance and the particle quantity according to the errors of tracking and the athletes' act change margin. The experimental results show that the algorithm proposed in this paper has a lower tracking error rate compared to the traditional particle filtering algorithms, and has better robustness when the athletes' act change margin is bigger.
出处 《计算机工程与科学》 CSCD 北大核心 2009年第4期52-55,共4页 Computer Engineering & Science
基金 国家自然科学基金资助项目(60673093) 湖南省自然科学基金资助项目(06JJ2065)
关键词 跳水运动视频跟踪 自适应观测模型 粒子滤波 video tracking of diving adaptive observation model particle filtering
  • 相关文献

参考文献12

  • 1Arulampalam M, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[J]. IEEE Trans on Signal Processing, 2002,50 (2) : 174-188.
  • 2Katja N, Esther K M, Lue V G. An Adaptive Color-Based Particle Filter[J]. Image Vision Computing, 2003,21 ( 1 ):99- 110.
  • 3Shan Canfeng, Wei Yucheng, Tan Tieniu, et al. Real-Time Hand Tracking by Combining Particle Filtering and Mean Shift[C]//Proc of the 6th IEEE Int'l Conf on Automatic Face and Gesture Recognition, 2004 : 669-674.
  • 4Liu T L,Chen H T. Real-Time Tracking Using Trust-Region Methods[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004,26 (3): 397-402.
  • 5Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-Rigid Objects Using Mean Shift[C]//Proc of IEEE Conf on Computer Vision and Pattern Recognition, 2000:142-149.
  • 6Nguyen H T, Worring M, van den Boorngaard R.Occlusion Robust Adaptive Template Traeking[C]//Proc of the 8th IEEE Int'l Conf on Computer Vision, 2000 : 678-683.
  • 7Sidenbladh H, Black M J, Fleet D J. Stochastic Tracking of 3D Human Figures Using 2D Image Motion[C]//Proc of European Conf on Computer Vision, 2000:702-718.
  • 8Ning H, Tan T, Wang L, et al. Based Tracking of Human Walking in Monocular Video Sequences[J]. Image and Vision Computing, 2004,22 ( 5 ):429-441.
  • 9Plankers R. Fua P. Tracking and Modeling People in Video Sequences[J]. Computer Vision and Image Understanding, 2001,81(3) : 285-302.
  • 10Zhao J, LI L. Human Motion Reconstruction from Monocular Images Using Genetic Algorithms[J].Computer Animation and Virtual World, 2004,15 (3) : 407-414.

二级参考文献12

  • 1Bregler C, Malik J. Tracking people with twists and exponential maps[A]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, 1998. 8~15.
  • 2Cham T J, Rehg J M. A multiple hypothesis approach to figure tracking[A]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999. 239~245.
  • 3Isard M, Blake A. Condensation-conditional density propagation for visual tracking[J]. International Journal of Computer Vision, 1998, 29(1): 5~28.
  • 4Blake A, Isard M, Reynard D. Learning to track the visual motion of contours[J]. Artificial Intelligence, 1995, 78: 101~134.
  • 5Bregler C. Learning and recognizing human dynamics in video sequences[A]. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Piscataway, 1997. 568~574.
  • 6Yacoob Y, Davis L. Learned temporal models of image motion[A]. In: Proceedings of the 6th International Conference on Computer Vision, Bombay, 1998. 446~453.
  • 7Pavlovic V, Rehg J M, Cham T J, et al. A dynamic Bayesian network approach to figure tracking using learned dynamic models[A]. In: Proceedings of the 7th International Conference on Computer Vision, Corfu, 1999. 94~101.
  • 8Howe N R, Leventon M E, Freeman W T. Bayesian reconstruction of 3D human motion from single-camera video[A]. In: Advances in Neural Information Processing Systems, Cambridge, Massachusetts: MIT Press, 2000, 12: 820~826.
  • 9Sidenbladh H, Black M J, Fleet D J. Stochastic tracking of 3D human figures using 2D image motion[A]. In: Proceedings of the 6th European Conference on Computer Vision, Dublin, 2000. 702~718.
  • 10Zhao T, Wang T S, Shum H Y. Learning a highly structured motion for 3D human tracking[A]. In: Proceedings of the 5th Asian Conference on Computer Vision, Melbourne, 2002. 144~149.

共引文献12

同被引文献13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部