期刊文献+

平面图形在NURBS曲面上的映射 被引量:1

Graphic mapping on NURBS surface based on knot vector matching
下载PDF
导出
摘要 针对现有曲面图形映射方法实用性不强的缺陷,提出了一种NURBS曲面图形映射方法。基于曲面外形设计或选取适当的平面图形,求出平面图形在坐标平面内的极限位置,根据曲面上映射图形的位置和大小对NURBS曲面的节点向量和首末参数进行调整,将平面图形嵌入NURBS曲面参数域的相应位置,利用NURBS理论将平面图形从曲面参数域映射到曲面。验证实例表明,算法原理简单、性能稳定,具有较强的适应性和实用性。 Aiming at the poor practicability of existing surface graphic mapping methods,A new graphic mapping technique on a NURBS surface is presented.Based on the shape of the surface,a planar graph is designed or selected firstly,the extreme positions of the planar graph are then determined.According to the location and size of the final mapping graph on the NURBS surface,the knot vectors and limit parameters of the surface are modified to match the planar graph,then all the elements in the planar graph are inserted into the parameter domain of the surface.The mapping graph on surface is achieved by NURBS theory. The examples show that the proposed method is simple and stable and it has stronger adaptability and practicability.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第1期7-9,21,共4页 Computer Engineering and Applications
基金 中国博士后科学基金~~
关键词 NURBS曲面 映射 匹配 节点向量 参数域 NURBS surface mapping matching knot vector parameter domain
  • 相关文献

参考文献6

二级参考文献19

  • 1张英杰,张铁昌.基于光线跟踪算法的纹理映射技术[J].计算机工程,1994,20(5):30-33. 被引量:2
  • 2张英杰,张铁昌.基于物体分类的非变形纹理映射技术[J].西北工业大学学报,1995,13(1):151-155. 被引量:5
  • 3潘志庚,马小虎,石教英.虚拟环境中多细节层次模型自动生成算法[J].软件学报,1996,7(9):526-531. 被引量:63
  • 4张英杰,博士学位论文,1995年
  • 5Joseph Pegna, Franz-Erich Wolter. Surface curve design by orthogonal projection of space curves onto free form surfaces[J]. Journal of Mechanical Design, 1996, 118(1): 45~52
  • 6Azariadis P N, Aspragathos N A. Geodesic curvature preservation in surface flattening through constrained global optimization [J ]. Computer-Aided Design, 2001, 33 (8): 581~591
  • 7Do Carmo M P. Differential Geometry of Curves and Surfaces[M]. Prentice-Hall, Englewood Cliffs, 1976
  • 8Hotz I, Hagen H. Visualizing geodesics [A]. In: Proceedings IEEE Visualization. Salt Lake City, 2000. 311~318
  • 9Zantout Rached N, Zheng Yuan F. Determining geodesics of a discrete surface [A]. In: Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent System(MFT'94). Las Vegas, 1994. 551~ 558
  • 10Ravi Kumar G V V, Prabha S, et al. Geodesic curve computations on surfaces [J]. Computer-Aided Geometric Design, 2003, 20(2): 119~133

共引文献24

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部