期刊文献+

基于学习的人脸图像超分辨率重建方法 被引量:3

Learning-based super-resolution reconstruction of face image
下载PDF
导出
摘要 提出一种针对正面人脸图像的超分辨率重建方法,通过学习人脸图像梯度的空间分布特性,获取梯度先验知识;通过结合贝叶斯最大后验概率估计理论,采用最速下降优化方法得到高分辨率人脸图像。实验结果表明,该方法在仅输入2—3幅低分辨率图像的情况下即可重建出具有较佳高频细节的超分辨率图像。 Propose an algorithm that learned a prior on the spatial distribution of the images gradient for frontal images of faces,and then incorporated such a prior into the Maximum a Posterior Estimate (MAPE) algorithm.To get a single global minimum,use a gradient descent algorithm.Experimental results demonstrate that the proposed method is effective in reconstructing the high-frequency components of the images.Furthermore,the method can convert a small number(2-3) of low-resolution images of a face into a single high-resolution image.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第1期170-175,共6页 Computer Engineering and Applications
基金 国家自然科学基金~~
关键词 超分辨率重建 贝叶斯最大后验概率估计 基于学习 人脸图像 最速下降优化 super-resolution Maximum a Posterior Estimate( MAPE ) learning-based faces image gradient descent
  • 相关文献

参考文献12

  • 1Kim S P,Bose N K,Valenzuela.Recursive reconstruction of high resolution image from noisy undersampled muhiframes[J].IEEE Trans on Acoust,Speech,Signal Processing,1990,38:1013-1027.
  • 2Patti A,Tekalp A.Super-resolution video reconstruction with arbitrary sampling lattices and nonzero aperture time[J].IEEE Transactions on Image Processing,1997,6(8):1064-1076.
  • 3Patanavijit V,Jitapunkul S.An iterative super-resolution reconstruction of image sequences using a Bayesian approach with BTV prior and affine block-based registration[C]//Proceedings of the 3rd Canadian Conference on Computer and Robot Vision.IEEE,2006,7(9).
  • 4Schultz R,Steveuson R.Extraction of high-resolution frames from video sequences[J].IEEE Transactions on Image Processing,1996,5 (6):996-1011.
  • 5Baker S,Kanade T.Limits on super-resolutian and how to break them[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(9):1167-1183.
  • 6Vandewalle P,Siisstrunk S,Vetterli M.A frequency domain approach to registration of aliased images with application to superreselution[J].EURASIP Journal on Applied Signal Processing:Special Issue on Super-Resolution Imaging,2005.
  • 7Butt J P,Adelson H E.The lapacian pyramid as a compact image code[J].IEEE Transactions on Communications,1983,31(4):532-540.
  • 8Heeger J D,Bergen J R.Pyramid-based texture analysis/synthesis[C]// Computer Graphics Proceedings,AnnuM Conferences Series,ACM SIGGRAPH,Los Angelse,Califonia,1995:229-138.
  • 9Szeliski R,Golland P.Stereo matching with transparency and matting[C]//Sixth International Conference on Computer Vision(ICCV'98),Bombay,January 1998:517-524.
  • 10Teukolsky S A.C数值算法[M].傅祖芸,赵梅娜,丁岩石,译.2版,北京:电子工业出版社,2004:515-519.

同被引文献25

  • 1浦剑,张军平,黄华.超分辨率算法研究综述[J].山东大学学报(工学版),2009,39(1):27-32. 被引量:35
  • 2W.T. Freeman, T.R. Jones, E.C. Pasztor. Example- based super-resolution[J]. IEEE Computer Graphics and Application, 2002,22(2) : 56-65.
  • 3Xiaogang Wang, Xiaooi Tang. Hallucinating Face by Eigen-transformation[C]//Proc. IEEEJNL. Systems, Man, and Cubernetics, 2005,8 : 425 -434.
  • 4X. Tang, X. Wang. Face photo recognition using sketch[C]//Proc, Of ICIP,2002,9:257-260.
  • 5Huang, Tsai. Multi-frame image resolution and regis- tration. Advances In Computer Vision and Image Pro- cessing, 1984,1 : 317-319.
  • 6李兵兵,陆耀,王晓明.基于金字塔回归策略的人脸超分辨率[C]//全国第18届计算机技术与应用(CACIS·2007)学术会议,2007.
  • 7J. Sun, et al. Stereo matching using belief propagation [C]//ECCV, 2002.
  • 8sF. Guichard, J.M. Morel. A review of p. d. e. mod- els in image processing and image analysis[J]. Journal de Physique IV, 2002,12.
  • 9T. W. Ross. A level-set approach to image blending [J]. IEEE Trans. Image Processing, 2000,9(11).
  • 10Yang J C, Wright J, Huang T, et al. Image super -resolution as sparse representation of raw image patches[C]//IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA: IEEE Computer Society, 2008: 1-8.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部