期刊文献+

改进的频繁项集挖掘算法 被引量:2

Improved algorithm for mining frequent item sets
下载PDF
导出
摘要 频繁项集挖掘是数据挖掘中的一个重要研究课题。在分析Apriori算法与FP-growth算法特点的基础上,提出了一种改进的频繁项集挖掘算法,即索引生成频繁项集算法IGFA。IGFA算法基于Apriori算法并通过"索引二元组"生成候选集,减免了候选集的大量冗余,实验及结果分析表明该算法有效提高了频繁项集的挖掘效率。 Mining frequent itemsets is an important research topic in Data Mining.This paper discussed the characteristics of Apriori algorithm and FP-growth algorithm and proposed an improved algorithm IGFA(Index-binary array Generate Frequent itemsets Algorithm) based on Apriori algorithm.The number of candidates can be reduced greatly by using an index array which based on the binary group.Analysis and experiments show that mining frequent itemsets by IGFA have been proved efficiently.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第4期143-145,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.40471115 河南省高校科技创新人才支持计划No.2008HASTIT012 河南省自然科学基金No.0511011000 河南省科技攻关项目No.0624220081 郑州市科技攻关项目No.064SGDG25127-9 河南工业大学博士基金研究项目No.2008003 空间数据挖掘与信息共享教育部重点实验室开放基金No.200807~~
关键词 数据挖掘 关联规则 频繁项集 索引二元数组 data mining association rule frequent itemsets indexed binary array
  • 相关文献

参考文献6

  • 1Han Jia-wei,Kamber M.Data mining concepts and techniques[M]. Beijing: China Machine Press, 2001 : 179-180.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proc of VLDB'94,1994-09:487-499.
  • 3Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//Proc of SIGMOD'00,2000-05 : 1-12.
  • 4李清峰,周鲜成,王莉,周伟林.最小组合法挖掘最大频繁集[J].计算机应用研究,2008,25(3):702-704. 被引量:4
  • 5Tan Pang-ning,Steinbach M,Kumar V,et al.Introduetion to data mining[M].[S.l.]:Posts & Telecom Press,2006:209-221.
  • 6秦亮曦,史忠植.基于冰山查询的网络流量关联规则挖掘[J].计算机工程,2005,31(7):9-11. 被引量:2

二级参考文献17

  • 1杨明,孙志挥,宋余庆.快速更新全局频繁项目集[J].软件学报,2004,15(8):1189-1197. 被引量:18
  • 2刘君强,孙晓莹,王勋,潘云鹤.挖掘最大频繁模式的新方法[J].计算机学报,2004,27(10):1328-1334. 被引量:15
  • 3吉根林,杨明,宋余庆,孙志挥.最大频繁项目集的快速更新[J].计算机学报,2005,28(1):128-135. 被引量:47
  • 4陆介平,杨明,孙志挥,鞠时光.快速挖掘全局最大频繁项目集[J].软件学报,2005,16(4):553-560. 被引量:27
  • 5Agrawal IL Srikant R. Fast Algorithms for Mining Association Rules.In Proc. of VLDB'94, 1994-09:487-499.
  • 6Bayardo R. Efficiently Mining Long Patterns from Databases. in Proc.1998 ACM-S IGMOD, 1998.
  • 7Burdick D, Calimlim M, Gchrkc J. MAFIA: A Maximal Frequent Itcmsct Algorithm for Transactional Databases. in: int'l Conf. on Data Engineering, 2001-04.
  • 8Fang M, Shivakumar N, Molina H, et al. Computing Iceberg Queries Efficiently. in VLDB' 1998, 1998:299-310.
  • 9Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation. In Proc. of SIGMOD'00, 2000-05:1-12.
  • 10AGRAWAL R, IMIELINSKI T,SWAMI A. Minig association rides between sets of items in large databases[ C ]//Proc of ACM SIGMOD International Conference Management of Data. Washington DC : [ s. n.] ,1993:207-216.

共引文献4

同被引文献21

  • 1WS-Federation. ftp://www6.software.ibm.com/software/per/lib/develorary/wsfed.pdf .
  • 2Web Service Security SOAP Messages with Attachments Profile. http://www.oasisopen.org/committees/download.php/10902/wss-swaprofile-1.0-&e=7152 .
  • 3Chamberlin D,,Florescu D,Robie J.Xuery 1.0:An XML Query Language. W3C Working Draft . 2001
  • 4Mohammad Ashiqur Rahaman,,Maarten Rits,Andreas Schaad.An Inline Approach for Secure SOAP Requests and Early Validation. OWASP Europe Conference . 2006
  • 5Hany F,Yamany EL,Miriam AM.Capretz Use of Data Mining to Enhance Security for SOA. . 2008
  • 6DouglasR.Stinson. JournalofCombinatorialDesign .
  • 7Igor Sedukhin.End-to-End Security for Web Services and Services Oriented Architectures. . 2003
  • 8WS-SecurityPolicyV1.0. http://www.oasisopen.org/committee s/download.php/15979/oasis-wssx-wssecuritypolicy-1.0.pdf .
  • 9Gunnar Peterson.Service Oriented Security Architecture. Information Security . 2005
  • 10ThomasErl.Service-Oriented Architecture–Concepts and Design. . 2005

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部