期刊文献+

改进的关联模式竞争求解算法

Improved connectionist model resolving algorithm
下载PDF
导出
摘要 在利用概率因果网络模型进行故障诊断过程中,传统的计算方法不能直接得到诊断问题的解,且当故障节点较多或网络层次较多时,存在着"组合爆炸"、计算量呈指数速度增加等问题。本文提出了以因果网络理论为基础的关联模式竞争求解算法,并对该算法进行了改进。改进后的算法解决了多层次、多节点的复杂因果网络模型推理难题,降低了诊断复杂度。最后通过一个实例验证了此方法的优越性及工程实用性。 In the procedure of fault diagnosis by probabilistic causal network model,the solution of the diagnostic problem can not be directly gotten by the traditional reasoning algorithm,furthermore,multi-level,multi-node complicated causal network may lead to the problem of"combinatorial explosion"and the exponential increase in computational cost etc.The competition-based connectionist model reasoning algorithm based on probabilistic causal network is put forward and the algorithm is modified.The problem of multi-level,multi-node complicated causal network reasoning is solved by the algorithm presented,and the complexity of the diagnosis is reduced.Finally,the advantages and the engineering practicability are demonstrated by a practical example.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第4期205-207,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.60572173~~
关键词 因果网络 故障诊断 关联模式 causal network fault diagnosis connectionist model
  • 相关文献

参考文献4

  • 1Peng Y,Reggia J.A probabilistic causal model for diagnostic problem solving[J].IEEE Trans Systems, Man and Cybernetics:Special Issue for Diagnosis, 1987,17(2): 1469-161.
  • 2徐常胜,曹立明,张耀清.一种基于集合覆盖和可信度因子的多故障诊断模型[J].中国矿业大学学报,1994,23(2):42-47. 被引量:5
  • 3Lapizco-Encinas G C, Reggia J A.Diagnostic problem solving using swarm intelligence[C]//Swarm Intelligence Symposium,SIS 2005, Proceedings 2005, IEEE, 2005 : 365-372.
  • 4Peng Y,Reggia J A.Abductive inference models for diagnostic problem-solving.Symbolic Computation Series.New York:Springer-Vetlag, Inc, 1990.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部