期刊文献+

IM-FTS:一种快速增量式频繁访问序列挖掘算法 被引量:4

IM-FTS:high-speed incremental algorithm for mining frequent traversal sequences
下载PDF
导出
摘要 由于Web数据增长迅速,先前的频繁序列随着序列库的更新而改变。若重新挖掘频繁序列会增加处理时间和数据存储量。提出一种改进的扩展格结构IE-LATTICE,存储先前的挖掘结果,并在其基础上提出一种基于双向约束的增量挖掘算法IM-FTS,在利用先前结果和约束策略前提下,算法仅从插入和删除序列中发现新的频繁序列。分析和实验表明算法能有效缩减数据处理时间和存储空间。 Web data grows quickly in the short time,previous FTS may be changed when the sequence database is updated.Refinding FTS will consume too much execution time and storage space.In this paper,an improved extended lattice,IE-LATTICE is designed to store the previous mining results.An efficient algorithm based on bidirectional constraint,called IM-FTS is proposed, which utilizes the previous results and constraint strategy to discover the new FTS just from the added and deleted part of the database.The analysis and experiments show that IM-FTS algorithm efficiently reduces the average execution time and storage space for mining FTS.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第3期138-140,160,共4页 Computer Engineering and Applications
关键词 双向约束 驻留时间 扩展格 频繁访问序列 bidirectional constraint dwell time extended lattice frequent traversal sequence
  • 相关文献

参考文献6

  • 1Han J,Kamber M.数据挖掘-概念与技术[M].范明,孟小峰,译.2版.北京:机械工业出版社,2007.
  • 2Yen Show-jane.An efficient approach for analyzing user behaviors in a Web-based training environment[J].International Journal of Distance Education Technologies, 2003,1 (4) : 55-71.
  • 3Zaki M J.SPADE:an efficient algorithm for mining frequent sequences[J].Machine Learning, 2001,42(1): 31-60.
  • 4Cheng H,Yan X,Han J.IncSpan:incremental mining of sequential patterns in large database[C]//Proceedings of KDD'04,Seattle,2004: 527-532.
  • 5Catledge L D,Pitkow J E.Characterizing browsing strategies in the World-Wide Web[J].Computer Networks and ISDN Systems,1998,27 (6): 1065-1073.
  • 6Ren Jia-dong,Zhang Xiao-jian,Peng Hui-li.IMFTS:high-speed mining frequent traversal sequences with bidirectional constraints[C]// Web Intelligence 2006,IEEE/WI/ACM International Conference, Hongkong, China, 2006: 356-360.

同被引文献31

  • 1孙蕾,朱玉全.频繁序列模式挖掘中关键技术的研究[J].计算机工程,2006,32(11):95-96. 被引量:6
  • 2张坤,朱扬勇.无重复投影数据库扫描的序列模式挖掘算法[J].计算机研究与发展,2007,44(1):126-132. 被引量:17
  • 3Han Jiawei,Kamber Micheline.数据挖掘概念与技术(第2版)[M].范明,孟小峰译.北京:机械工业出版社,2008.
  • 4Agrawal R, Srikant R.Mining sequential pattem[C]//Proceedings of the l lth International Conference on Data Engineering.Taipei: IEEE Computer Society Press, 1995 : 3-14.
  • 5Masseglia F, Poncelet P, Teisseure M.Incremental mining of sequential patterns in large database[J].Data and Knowledge Engineering, 2003,46(1) : 97-121.
  • 6Lin M Y,Lee S Y.Incremental update on sequential patterns in large databases[C]//Proeeedings of 10th IEEE International Conference on Tools with Artificial Intelligenee.Taipei: [s.n.], 2001: 24-31.
  • 7Hsieh ChiaYing,Yang DonLin,Wu Jungpin.An efficient sequential pattern mining algorithm based on the 2sequence matrix[C]// Proceedings of 2008 IEEE International Conference on Data Mining Workshops.Taipei: [s.n.], 2008: 583-591.
  • 8Zou Xiaohong, Zhao Li, Guo Jingfeng, et al. An advanced algorithm of frequent subgraph mining based on ADI [ J ]. ICIC Express Letters,2009,3 (3) :639-644.
  • 9Agrawal R, Srikant R. Mining sequential patterns [ C ]//Proceedings of the 11th International Conference on Data Engineering. United States : IEEE, 1995:3-14.
  • 10Ren Jiadong, Sun Yafei, Guo Sheng. Incremental sequential pattern mining based on constraints [ J ]. Journal of Computational Information Systems, 2008,4 (2) : 571-576.

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部