期刊文献+

基于支持向量机的模拟电路故障诊断方法 被引量:1

SVM-Based Diagnostic Method for Analog Circuit Faults
下载PDF
导出
摘要 支持向量机(Support Vector Machines,SVM)故障分类器,在不易取得训练样本的情况下,实现较高准确率的故障诊断,并且具有较强的通用性和实用性。提出三种支持向量多类分类器(一对一算法、一对多算法,以及改进型一对多算法),通过将其应用到实际电路进行故障诊断当中对其性能进行比较,得出串行支持向量机无论在分类速度上还是在分类精度上都好于其它两种方法,核函数的选择对故障诊断的性能也存在着一定的影响。 Under uneasy achievement of training samples, fault classifier based on support vector machine (SVM) can diagnose faults with high accuracy and strong versatility and practicabillity. We proposed three multi-class classifiers including one-to-one algorithm, one-to-many algorithm, and improved one-to-many algorithm. Compared with their performances by using in practical circuit fault diagnosis, the results show the serial SVM is better than the other two methods in some aspects such as classification speed and accuracy, and the selection of Kernel function has influence on the performance of fault diagnosis.
出处 《兵工自动化》 2009年第4期79-81,共3页 Ordnance Industry Automation
关键词 支持向量机 多类分类 模拟电路 故障诊断 SVM Multi-class classification Analog circuit Fault diagnosis
  • 相关文献

参考文献7

  • 1Liu R W. Testing and Diagnosis of Analog Circuits and Systems [M]. NY: Van Nostrand Reinhold, 1991.
  • 2Spina R. Linear Circuit Fault Diagnosis Using Neuromorphic Analyzers[J]. IEEE Tram on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 1997, 44(3): 188-196.
  • 3Yang Z R. Applying a Robust Heteroscedastic Probabilitistic Neural Network to Analog Fault Detection and Classification [J]. IEEE Tram on Circuits and Systems-Ⅱ: Analog and Digital Signal Processing, 2000: 19(1): 142-151.
  • 4张燕军,张彦斌,成娟娟.基于人工神经网络的大规模模拟电路故障诊断[J].兵工自动化,2007,26(4):71-73. 被引量:2
  • 5宋召青,崔和,胡云安.支持向量机理论的研究与进展[J].海军航空工程学院学报,2008,23(2):143-148. 被引量:21
  • 6Vapnik V N. The Nature of Statistical Learning Theory[M]. NY: Springer-Verlag, 1999.
  • 7Aminian M, Amlnlan F. Neural Network Based Analog Circuit Fault diagnosis Using Wavelet Transform as Preprocessor [J]. IEEE Tram on Circuits and Systems -Ⅱ : Analog and Digital Signal Processing. 2000, 47(2): 151-156.

二级参考文献39

共引文献21

同被引文献6

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部