期刊文献+

能量依赖速度的二阶谱问题及其完全可积系

The Second-order Spectral Problem with the Speed Energyand its Completely Integrable System
下载PDF
导出
摘要 讨论了与能量依赖速度的二阶特征值问题相联系的有限维系统的可积性,利用位势函数与特征函数之间的Bargmann约束,将Lax对非线性化,得到新的有限维Ham ilton正则系统,最后借助于Liouville意义下的完全可积系的对合解得到发展方程族的对合表示。 In this paper, the integrability which a finite-dimensional Hamihonian system is associated with a second-order spectral problem with the speed energy is discussed. Moreover, according to the Bargmann constraint between the potential function and the eigenfunction , the Lax pairs are nonlinearized, Then based on the involutive solution of completely integrable Hamihonian system in Liouville sense, the involutive solutions of the evolution equations are given.
出处 《石家庄铁道学院学报(自然科学版)》 2009年第1期77-81,共5页 Journal of Shijiazhuang Railway Institute
关键词 谱问题 可积系统 对合表示 spectral problem integrable problem involutive representation
  • 相关文献

参考文献1

  • 1Cao Cewen. A classical integrable system and the involutive representation of solutions of theKdV equation[J] 1991,Acta Mathematica Sinica(3):216~223

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部