期刊文献+

一种引入信息素上下界自适应机制的蚁群算法 被引量:7

A Kind of Ant Colony Algorithm with Adaptive Strategy of Pheromone Lower and Upper Bounds
下载PDF
导出
摘要 使用传统蚁群算法求解最优路径问题时,存在搜索速度慢且易于陷入局部最优解等缺陷.针对这个问题,提出一种改进的蚁群算法:在每次迭代结束后,根据本次迭代产生的最优解与当前最优解的比较结果,动态调整路径上信息素的上下界,使路径上信息素永远保持在一个被允许的范围内,从而避免使算法过早陷入局部最优解.仿真实验证明:改进的蚁群算法较传统的蚁群算法的搜索性能有较大的提高. When resolving the optimal path problem with traditional ant colony algorithms, it is shown that its speed is slow and is prone to fall into local optimization. To deal with this problem, a kind of modified ant colony algorithm is proposed. After each iteration, according to the comparison result of optimization produced in this iteration and optimization, the range of adjustment to put the pheromone on a pheromone range and to avoid falling into local optimization early is by using simulated experiments to show that modified ant colony algorithms have better searching ability than a traditional one.
出处 《沈阳化工学院学报》 2009年第1期65-68,共4页 Journal of Shenyang Institute of Chemical Technolgy
关键词 蚁群算法 上下界 信息素 ant colony algorithm lower and upper bounds pheromone
  • 相关文献

参考文献7

  • 1Colorni A, Dorigo M, Maniezzo V. The Ant System:Optimization by a Colony of Cooperating Agents[J ]. IEEE Transactions on Systems, 1996,26(1):1 -13.
  • 2Bullnheimer B,Hartl R F,Strauss C. A New Rankbased Version of the Ant System: A Computational Study [ R ]. Vienna: Institute of Management Science, University of Vienna, 1997.
  • 3Dorigo M, Cambardella L M. A Cooperative Learning Approach to the Traveling Salesman Problem [ J ]. IEEE Transactions on Evolutionary Computation, 1997,1 ( 1 ) :53 -66.
  • 4申春 彭秀增 罗凡 等.基于方向启发因子的蚁群算法.计算机科学,2006,33(8):175-176.
  • 5张志民,张小娟,李明华,胡小兵.一种引入奖励与惩罚机制的蚁群算法[J].计算机仿真,2006,23(7):161-163. 被引量:11
  • 6张曦煌,李彦中,李岩.基于加速寻径收敛的改进型蚁群算法[J].计算机工程与应用,2007,43(24):75-77. 被引量:5
  • 7张毅,梁艳春.基于选路优化的改进蚁群算法[J].计算机工程与应用,2007,43(2):60-63. 被引量:14

二级参考文献22

  • 1胡小兵,黄席樾,张著洪.一种新的自适应蚁群算法及其应用[J].计算机仿真,2004,21(6):108-111. 被引量:19
  • 2HUANG Lan , ZHOU Chunguang and WANG Kangping(College of Computer Science and Technology, Jilin University, Changchun 130012, China).Hybrid ant colony algorithm for traveling salesman problem[J].Progress in Natural Science:Materials International,2003,13(4):295-299. 被引量:15
  • 3M Dorigo,V Maniezzo and A Colorni.Positive feedback as a search strategy[R].Technical Report 91-016,Dipartimento di Elettronica,Politecnico di Milano,IT,1991.
  • 4M Dorigo,G Di Caro and L M Gambardella.Ant algorithms for discrete optimization[J].Artificial Life,1999,5(2):137-172.
  • 5M Dorigo and L M Gambardella.Ant Colony System:A Cooperative Learning Approach to the Traveling Salesman Problem[J].IEEE Transactions on Evolutionary Computations,1997,1(1):53-66.
  • 6L M Gambardella and M Dorigo.Solving Symmetric and Asymmetric TSPs by Ant Colonies[C].In Proceedings of the IEEE International Conference on Evolutionary Computation (ICEC'96),pages 622-627.IEEE Press,1996.
  • 7Kemal Akkaya,Mohamed younis.A survey on routing protocols for wirless sensor networks[J].Ad Hoc Network Jouranl,2005,3 (3):325-345.
  • 8Gutjahr W J.ACO algorithms with guaranteed convergence to the optimal solution[J].Information Processing Letters,2002,82(3):145-153.
  • 9Cambardella L M,Dorigo M.An ant colony system hybridized with a new local search for the sequential ordering problem[J].INFORMS Journal on Computing,2000,12(3):237-255.
  • 10Gambardella L M,Mastrolilli M,Rizzoli A E,et al.An integrated approach to the optimization of an intermodal terminal based on efficient resource allocation and scheduling[J].Journal of Intelligent Manufacturing,2001,12(5/6):521-534.

共引文献21

同被引文献12

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部