期刊文献+

单层网壳损伤识别理论与试验研究 被引量:1

Theoretical and experimental research on damage detection for single-layer lattice shell
下载PDF
导出
摘要 结构损伤识别可以归结为结构损伤参数的模式识别问题.对结构响应信号进行小波包分解可以获得各频带的信号能量,将此特征向量作为输入,利用支持向量机强大的模式分类功能,可以实现结构的损伤识别.在环境振动下,对1/10比例的单层网壳模型进行损伤识别试验,将不同的杆件沿径向进行相应程度的截面切割用以模拟不同程度的损伤状态.对不同损伤情况的加速度样本进行三层小波包分解,以相应频带的信号能量作为输入建立支持向量机,利用支持向量机对未训练样本的信号能量进行损伤分类.试验结果表明该方法简便准确,验证了小波包和支持向量机方法用于损失识别的有效性. The problem on structural damage detection can be viewed as the study on pattern recognition of damage parameters. The signals of structural responses can be decomposed by wavelet packet and the energy of different frequency bands is gained. The energy vector can be used as the input of support vector machine, which has the strong ability on pattern classification, and the damage detection could be realized. A damage detection test for a single layer bielliptical spherical lattice shell model with a scale of 1/10 is carried out under ambient vibration. The damage cases are constructed by incising the sections of different elements with three degrees. Acceleration signals are decomposed by three-layer wavelet packet, and energy vectors are produced and used for training and classification as the inputs of the support vector machine. The validity of this damage detection method is proved by the experimental results.
出处 《空间结构》 CSCD 北大核心 2009年第1期60-64,共5页 Spatial Structures
基金 北京市自然科学基金重点资助项目(50878010) 北京市科委奥运专项项目(Z0005174040111)
关键词 小波包 支持向量机 损伤识别 单层网壳 环境振动 wavelet packet support vector machine damage detection single-layer lattice shell ambient vibration
  • 相关文献

参考文献6

二级参考文献38

  • 1高赞明,孙宗光,倪一清.基于振动方法的汲水门大桥损伤检测研究[J].地震工程与工程振动,2001(S1):117-124. 被引量:35
  • 2刘亚娟,关丛荣,张晓芹.基于小波包和支持向量机的齿轮故障诊断[J].机械传动,2004,28(4):41-43. 被引量:2
  • 3姜绍飞,王留生,殷晓志,刘明.结构健康监测中的数据融合技术[J].沈阳建筑大学学报(自然科学版),2005,21(1):18-22. 被引量:19
  • 4王惠文.光纤传感技术及应用[M].北京:国防工业出版社,2001..
  • 5Culshaw B 李少慧(译).光纤传感器[M].武汉:华中理工大学出版社,1997.388-391.
  • 6Yen G G,Lin K C .Wavelet Packet feature extraction for vibration Monitoring[J].IEEE Trans.Industrial Electronics,2000,47(3):650-667.
  • 7Vapnik VN.Statistical Learning Theory[M].New York:Wiley,1998.
  • 8Aftab A,Mufti.Structural Health Monitoring of Innovative Canadian Civil Engineering Structures [J].Structural Health Monitoring,2002,1(1):89-103.
  • 9Sumitro S1,Wang ML.Sustainable structural health monitoring system[J].Structural Control and Health Monitoring,2005,3(12):445-467.
  • 10Lynch J P.Design of a wireless active sensing unit for localized structural health monitoring [J].Structural Control and Health Monitoring,2005,3(12):405-423.

共引文献261

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部