摘要
提出了一种全部由五边形和六边形网格组成的球面网壳形式(以下简称组合多面体),此种球面网壳结构在国内还很少见,对它们的研究目前虽然还不太成熟,但已经取得了很大进展.这样的组合多面体有无穷多个,本文详细论述了其中的一种组合272面体的几何性质和分支展开特性,并根据节点突角和相等理论进行了节点突角计算、边长计算和球面半径计算,为272面体球面网壳的几何构型设计提供了理论依据,建立了272面体的实体模型.
This paper proposes one kind of latticed shell which is composed of pentagons and hexagons and called combined polyhedrons. The research of the structure is not particularly mature, but a big progress has already been made. This kind of combination polyhedrons is infinite. The geometry nature and the branch characteristic of one kind of them-272 hedron is introduced in this paper. The computation of the node quoin, the length of the side and the radius of the spherical surface are given based on the principle of the quoin sum equaling, which provided the theory basis for the geometry design of 272 hedron. The full- scale mock-up of the 272 hedron are also established.
出处
《空间结构》
CSCD
北大核心
2009年第1期73-76,共4页
Spatial Structures
关键词
组合272面体
几何性质
分支展开特性
突角
边长
球面半径
combined 272 polyhedrons
geometric properties
branch characteristic
node quoin
side length
radius of the spherical surface