期刊文献+

Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau 被引量:23

Numerical simulation of GPS observed clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau
原文传递
导出
摘要 From Global Position System(GPS) measurements,there is a clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau.This phenomenon is difficult to be interpreted by simple two-dimensional modeling from a geodynamic point of view.Because of the extremely thick crust and the lower crust with relatively high temperature in the Tibetan Plateau,the lithospheric rheology in Tibet and surrounding areas present a complex structure.In general,the tectonic structure of the Tibetan Plateau consists of brittle upper crust,ductile lower crust,high viscosity lithospheric upper mantle,and low viscosity asthenosphere,the same as the case in many other continental regions.However,the lower crust in the Tibetan Plateau is much more ductile with a lower viscosity than those of its sur-roundings at the same depth,and the effective viscosity is low along the collision fault zone.In this study,we construct a three-dimensional Maxwell visco-elastic model in spherical coordinate system,and simulate the deformation process of the Tibetan Plateau driven by a continuous push from the Indian plate.The results show that the existence of the soft lower crust under the plateau makes the entire plateau uplift as a whole,and the Himalayas and the eastern Himalayan syntax uplift faster.Since the lower crust of surrounding blocks is harder except in the southeastern corner where the high-temperature material is much softer and forms an exit channel for material transfer,after the whole plateau reaches a certain height,the lower crustal and upper mantle material begins to move eastward or southeastward and drag the upper crust to behave same way.Thus,from the macroscopic point of view,a relative rigid motion of the plateau with a clockwise rotation around the eastern Himalayan syntax is developed. From Global Position System (GPS) measurements, there is a clockwise rotation around the eastern Himalayan syntax in the Tibetan Plateau. This phenomenon is difficult to be interpreted by simple two-dimensional modeling from a geodynamic point of view. Because of the extremely thick crust and the lower crust with relatively high temperature in the Tibetan Plateau, the lithospheric rheology in Tibet and surrounding areas present a complex structure. In general, the tectonic structure of the Tibetan Plateau consists of brittle upper crust, ductile lower crust, high viscosity lithospheric upper mantle, and low viscosity asthenosphere, the same as the case in many other continental regions. However, the lower crust in the Tibetan Plateau is much more ductile with a lower viscosity than those of its sur- roundings at the same depth, and the effective viscosity is low along the collision fault zone. In this study, we construct a three-dimensional Maxwell visco-elastic model in spherical coordinate system, and simulate the deformation process of the Tibetan Plateau driven by a continuous push from the Indian plate. The results show that the existence of the soft lower crust under the plateau makes the entire plateau uplift as a whole, and the Himalayas and the eastern Himalayan syntax uplift faster. Since the lower crust of surrounding blocks is harder except in the southeastern corner where the high-temperature material is much softer and forms an exit channel for material transfer, after the whole plateau reaches a certain height, the lower crustal and upper mantle material begins to move eastward or southeastward and drag the upper crust to behave same way. Thus, from the macroscopic point of view, a relative rigid motion of the plateau with a clockwise rotation around the eastern Himalayan syntax is developed.
出处 《Chinese Science Bulletin》 SCIE EI CAS 2009年第8期1398-1410,共13页
基金 Supported by Knowledge Innovation Project of the Chinese Academy of Sciences (Grant No.KZCX2-YW-123) National Natural Science Foundation of China (Grant Nos.40774048 and 90814014)
关键词 东喜马拉雅 顺时针旋转 青藏高原 GPS观测 数值模拟 语法 岩石圈地幔 全球定位系统 Tibetan Plateau, ductile lower crust, three-dimensional finite element, spherical coordinate, Maxwell model, numerical simulation
  • 相关文献

参考文献10

二级参考文献146

共引文献231

同被引文献452

引证文献23

二级引证文献204

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部