期刊文献+

基于自适应差异演化的模糊聚类算法 被引量:4

A New Fuzzy Clustering Algorithm Based-on Adaptive Differential Evolution
下载PDF
导出
摘要 在聚类分析中,模糊C-均值聚类(FCM)是一种广泛应用的算法,但由于它是基于梯度下降的,本质上是一种局部搜索算法,容易陷入局部极小值,且对初始值很敏感.本文提出一种基于自适应差异演化的模糊聚类算法(FCBADE),该算法利用差异演化良好的全局搜索能力,在全局范围内寻找最优解的近似解,然后由FCM算法在该近似解的周围进行局部搜索,最终得到全局最优解.同时为减少手工设置控制参数对DE算法的影响,采用自适应方式调整DE算法的控制参数.实验结果表明,该算法不仅有效克服了FCM算法易陷入局部极小值的缺点,而且明显地避免了对初始化选值敏感性的问题,也有较快的收敛速度. Fuzzy C-means clustering (FCM) algorithm is a widely used algorithm in cluster analysis. However, as it is based on the gradient descent, FCM is essentially a local search algorithm. It is easy to fall into a local minimum, and is very sensitive to the initialization. In this paper, a new fuzzy clustering method based on an improved differential evolution algorithm was presented. First, the algorithm searches the approximate global optimal solution by the improved differential evolution, then the FCM algorithm is used for search in the optimal solution surrounding approximate solution. At the same time, an improvement is presented for reduce the impact of manual set parameters for DE algorithm. Experimental results shown that the proposed algorithm not only avoids the local optima and is robust to initialization, but also increases the convergence speed.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第2期17-21,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(60443003) 河北省科技厅科技攻关项目(052135149)
关键词 差异演化算法 模糊C-均值聚类 聚类分析 自适应参数控制 differential evolution algorithm fuzzy C-means clustering cluster analysis self-adaptive parameter control
  • 相关文献

参考文献12

  • 1Han J W, Kamber M. Data Mining: Concepts and Techniques[ M]. 2ed., San Francisco: Morgan Kaufmann Publishers, 2001:223 - 250.
  • 2Dunn J C. A Fuzzy Relative of the ISODATA PRocess and Its Use in Detecting Compact Well-Separaled Clusters [J]. Q Cybernet, 1974 (3): 32-57.
  • 3Lawrence O Hall, Ibrahim Burak O Zyurt, James C. Bezdek. Clustering with A Genetically Optimized Approach[J]. IEEE Trans Evol Comput, 1999,3(2): 103 - 112.
  • 4Bandyopadhyay Sanghamitra, Maulik Ujjwal. Genetic Clustering for Automatic Evolution of Clusters and Appli- cation to Image Classification [J].Pattern Recognition, 2002,35(6) : 1197 - 1208.
  • 5Maulik U, Bandyopadhyay S. Fuzzy Partitioning Using A Real-Coded Variablelength Genetic Algorithm for Pixel Classification [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(5) : 1075 - 1081.
  • 6Malay K, Pakhira, Sanghamitra Bandyopadhyay, Ujjwal Maulik A Study of Some Fuzzy Cluster Validity Indices, Genetic Clustering and Application to Pixel Classification [J]. Fuzzy Sets and Systems, 2005,155(2) : 191 - 214.
  • 7Omran M, Engelbrecht A, Salman A. Differential Evolution Methods for Unsupervised Image Classification[ C]// Proceedings of IEEE Congress on Evolutionary Computation, 2005 : 966 - 973.
  • 8Swagatam Das, Amit Konar, Uday K. Chakraborty Automatic Fuzzy Segmentation of Images with Differential Evolution[ C]// Proceedings of IEEE Congress on Evolutionary Computation, 2006: 2026 - 2033.
  • 9熊伟,丁全心,陈宗基,周锐.基于遗传模糊聚类的机群编队最优分配方法[J].北京航空航天大学学报,2008,34(2):193-196. 被引量:4
  • 10Storn R, Price K. Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces[R]. International Computer Science Instititute, Berkely, California, 1995.

二级参考文献9

  • 1Choe H, Jordan J B. On the optimal choice of parameters in a fuzzy c-means algorithm [ C ]//Proceedings of The 1 st IEEE International Conference on Fuzzy Systems. San Diego, CA, USA: IEEE, 1992:349-354
  • 2Shen Yi, Shi Hong, Zhang Jianqiu. Improvement and optimization of a fuzzy c-means clustering algorithm [ C ]//Proceedings of The 18th IEEE Instrumentation and Measurement Technology Conference. Budapes: IEEE, 2001 : 1430 - 1433
  • 3Choi D H, Oh S Y. A new mutation rule for evolutionary programming motivated from backproagation learning [ J ]. IEEE Transactions on Evolutionary Computation, 2000, 4 (2) : 188 - 190
  • 4Patrick C H Ma, Keith C C Chan, Xin Yao, et al. An evolutionary clustering algorithm for gene expression microarray data analysis[ J ]. IEEE Transactions on Evolutionary Computation, 2006, 10(3) : 296 -314
  • 5Bezdek J C. Pattern recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981:43-93
  • 6Nikhil R Pal, Kuhu Pal, James M Keller, et al. A possibilistic fuzzy c-means clustering algorithm [ J ]. IEEE Transactions on Fuzzy Systems, 2005, 13(4) : 517 -530
  • 7Holland J H. Genetic algorithms [ J]. Scientific American, 1992, (9) :44 -50
  • 8Vasconcelos J A, Ramirez J A, Takahashi R H C, et al. Improvements in genetic algorithms [ J ]. IEEE Transactions on Magnetics, 2001, 37 ( 5 ) : 3414 - 3417
  • 9张科施,王正平.基于遗传模拟退火算法的空战编队优化研究[J].西北工业大学学报,2003,21(4):477-480. 被引量:12

共引文献3

同被引文献40

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部