期刊文献+

二维矩形块布局的交叉熵方法实现 被引量:1

A Cross-Entropy Method for Two-DimensionalPacking Problem with Rectangle Pieces
下载PDF
导出
摘要 给定一个小矩形块集和一个固定宽度而高度变化的大矩形的二维布局问题,就是将这矩形集中的所有矩形正交布置于这个大矩形中,并且保证矩形块之间不发生重叠,目的就是使得布局后这个大矩形块的高度最小.本文提出通过DROP或DROPF(DROP FILL)的启发式解码策略与交叉熵算法相结合求解该类问题.试验结果显示,算法稳定有效,较经典元启发式算法在提高空间利用率上有较大提高. Given a set of rectangular pieces and an object of fixed width and variable height, the two-dimensional packing problem consists of orthogonally placing all the pieces within the object, without overlapping, so that the overall height of the layout is minimized. This paper proposes a new algorithm by combining the DROP or DROPF (DROP FILL) heuristic decoder policy into the Cross-Entropy to solve the problem. The experiment results demonstrated that the algorithm is stable and fairly efficient. And it improves the occupation rate comparing with the classical meta-heuristic algorithm.
出处 《北京交通大学学报》 CAS CSCD 北大核心 2009年第2期39-43,共5页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 河北省自然科学基金资助项目(F20060003040) 北京交通大学科技基金资助项目(2006XZ011)
关键词 二维矩形块布局问题 交叉熵 DROP DROPF 2D-R-ODP cross-entropy(CE) DROP DROPF
  • 相关文献

参考文献10

  • 1Dycyhoff. A Typology of Cutting and Packing Problems [J]. European Journal of Operational Research, 1990,44: 145- 159.
  • 2Wascher G, Hauβner H, Schumann H. An Improved Typology of Cutting and Packing Problems [ J]. European Journal of Operattional Research, 2006, 183 : 33 - 51.
  • 3Jakobs S. On Genetic Algorithms for the Packing of Polygons[J]. European Journal of Operattional Research, 1996, 88: 165- 181.
  • 4Liu D, Teng H. An Improved BL-Algorithm for Genetic Algorithm of the Orthogonal Packing of Rectangles I J]. European Journal of Oprational Research, 1999,112: 413 - 420.
  • 5Hopper E, Turton B C H. An Empirical Investigation of Meta-Heuristic and Heuristic Algorithm for A 2D Packing Problem [J]. European Journal of Operational Research, 2001,128:34 - 57.
  • 6Leung T W, Chan C K, Troutt M D. Application of A Mixed Simulated Annealing-Algorithm Heuristic for the Two-Dimensional Orthogonal Packing Problem[J]. European Journal of Operational Research, 2003, 145:530 - 542.
  • 7Rubinstein R Y. Cross-Entropy Method for Combinatorial and Continuous Optimization[J]. Methodology and Computing in Applied Probability, 1999,2:127 - 190.
  • 8Rubinstein R Y. Cross-Entropy Method and Rare-Events for Maximal Cut and Bipartition Problems [J]. ACM Transactions on Modeling and Computer Simulation, 2002, 12:27 - 53.
  • 9DeBoer P T, Kroese D P, Rubinstein R Y. A Fast Cross-Entropy Method for Estimating Buffer Overflows in Queueing[ J]. Networks Management Science, 2004, 50: 883 - 895.
  • 10Hui K P, Bean N, Kraetzl M. Cross Entropy Method for Networks Estimation[J]. Annals of Operations Research, 2005,134:101 - 118.

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部