期刊文献+

基于日志挖掘的检索推荐系统 被引量:3

A Recommendation System for Information Retrieval Based on Web Logs Mining
下载PDF
导出
摘要 目的为了有效地预测用户在信息检索过程中可能点击的检索结果,从而进行网页的智能推荐.方法采取网络日志挖掘的技术,通过词频信息和知网(HowNet)中词的概念计算模型计算网页文档间的主题相关度,再将该语义信息与统计模型计算的条件概率值相结合,以此作为网页推荐的依据.结果提出了一种检索推荐统计模型,并构建了相应的原型系统,实验表明该方法显著提高了推荐系统的准确率.结论这项技术有效地提高了推荐结果与用户信息需求的相关程度,使推荐系统的性能获得了较大地提高,可以很好的应用于信息检索的智能推荐服务领域. The Web page recommendation systems can effectively predict users' next clicking results in information retrieval process and the research will be beneficial to many applications ranging from intelligent recommendation to improving effectiveness of search engines. In this paper, in order to deal with the problem of lack of semantic processing in present systems, the technology of Web log mining has been adopted to use word frequency and the concept relevancy model of HOWNET to compute document relevancy, and the result is used to guide the process of pages recommendation. In the end, a relevancy-based recommendation system based on query logs mining is proposed, which combines document relevancy calculation with the method of statistical language model. Furthermore, the prototype system has been built and the experiment showed that this method significantly improved the accuracy of recommendation systems. In conclusion, this method outperforms other models in the web page recommendation systems and overcomes the problem of the lack of effective semantic process. The performance of recommendation system has been improved greatly and the technique can be widely used on the intelligent recommended services in information retrieval field.
出处 《沈阳建筑大学学报(自然科学版)》 CAS 北大核心 2009年第2期366-370,共5页 Journal of Shenyang Jianzhu University:Natural Science
基金 国家自然科学基金项目(60673037) 国家计划探索导向类项目(2007AA01Z172)
关键词 网页推荐 信息检索 日志挖掘 文档相关度 Web page recommendation information retrieval Web Log mining document relevancy
  • 相关文献

参考文献11

  • 1余慧佳,刘奕群,张敏,茹立云,马少平.基于大规模日志分析的搜索引擎用户行为分析[J].中文信息学报,2007,21(1):109-114. 被引量:117
  • 2王继民,彭波.搜索引擎用户点击行为分析[J].情报学报,2006,25(2):154-162. 被引量:45
  • 3Baeza - Yates R,Hurtado C,Mendoza M. Query recommendation using query logs in search engines [ C]//Current Trends in Database Technology. Berlin: Springer-Verlag ,2004:588 - 596.
  • 4Baeza - Yates R, Tiberi A. Extracting semantic relations from query logs [ C ]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose:ACM, 2007 : 76 - 85.
  • 5Guo Yongzhen, Ramamohanarao K, Park L A F. Personalized page rank for web page prediction based on access time-length and frequency[C]//Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. Silicon Valley : IEEE, 2007 : 687 - 690.
  • 6Gundiaz S, Ozsu M T. Incremental click-stream tree model:learning from new users for web page prediction[J].Distributed and Parallel Databases, 2006,19 (1) :5 -27.
  • 7苏中,马少平,杨强,张宏江.基于Web-Log Mining的N元预测模型[J].软件学报,2002,13(1):136-141. 被引量:14
  • 8Zhang Yi, Jonathan K. Efficient bayesian hierarchical user modeling for recommendation system[C]//In Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Amsterdam : ACM, 2007 : 47 - 54.
  • 9Kim D H, Atluri V, Bieber M, et al. Web personalization:a clickstream-based collaborative filtering personalization model: towards a better performance[C]//Proceedings of the 6th Annual ACM International Workshop on Web Information and Data Management. Washington : ACM, 2004 : 88 - 95.
  • 10董振东.知网[EB/OL].(2008-09-15)[2008-12-01].http://www.keenage.com.

二级参考文献33

  • 1王建勇,单松巍,雷鸣,谢正茂,李晓明.Web search engine:characteristics of user behaviors and their implication[J].Science in China(Series F),2001,44(5):351-365. 被引量:4
  • 2中国互联网络信息中心 (China Internet Network Information Center,CNNIC),http://www.cnnic.net.cn/
  • 3Baldi P,Frasconi P,Smyth P.Modeling the Internet and the Web,probabilistic methods and algorithms.England:John Wiley,2003
  • 4Xie Yinglian,O'Hallaron D.Locality in search engine queries and its implications for caching.In:Proc.IEEE Infocom.2002
  • 5Silverstein C,Henzinger M,Marais H,et al.Analysis of a very large AltaVista query log.SRC Technical Note,1998-016,1998
  • 6Spink A,Wolfram D,Jansen B J,et al.Searching the web:The public and their queries.Journal of the American Society for Information Science,2001,53 (2):226~234
  • 7北大天网搜索引擎(Tianwang Search Engine).http://e.pku.edu.cn
  • 8Cho J.Crawling the Web:Discovery and Maintenance of a Large-Scale Web Data.[Ph.D.dissertation],Stanford University,2001
  • 9中国Web信息博物馆(Chinese Web Infomall.http://www.infomall.cn/
  • 10Beeferman D,Berger A.Agglomerative clustering of a search engine query log.In:Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,2000,407~416

共引文献166

同被引文献84

引证文献3

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部