期刊文献+

基于动态维度交叉的粒子群高维函数优化 被引量:5

Particle Swarm Optimization with Dynamic Dimension Crossover for High Dimensional Problems
下载PDF
导出
摘要 提出一种优化高维函数的改进粒子群算法。粒子群算法在高维函数优化方面精度比较低,种群容易陷入停滞,分析粒子群算法在针对高维函数方面难以优化的原因,提出一种基于动态维度交叉的改进粒子群算法,通过对五个典型测试函数的仿真,说明该算法具有摆脱较快的收敛能力和较高的收敛精度。 Previous work presented some modified approaches based particle swarm optimization (PSO) to solve complex optimization problems. Preliminary results demonstrated that PSO with crossover (CPSO) constituted a promising approach to solve some optimization problems. However how to optimize high dimensional problem with crossover became challenging. In this paper, a modified PSO with dimension crossover is proposed. First we analyze the cause of hardly optimizing the high dimensional problem, and then design one dynamic dimension crossover PSO (DDC- PSO) to cope with high dimensional problems. Finally DDC- PSO is tested on five benchmark optimization problems and the results show a superior performance compared to the standard PSO and CPSO.
作者 胡成玉 王博
出处 《计算技术与自动化》 2009年第1期92-95,共4页 Computing Technology and Automation
基金 国家自然科学基金资助(60674105) 中国地质大学优秀青年教师基金资助(CUGQNL0821)
关键词 粒子群算法 高维优化函数 维度交叉 PSO high dimensional problems dimension crossover
  • 相关文献

参考文献5

二级参考文献29

  • 1李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807. 被引量:48
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3胡铁松,万永华,冯尚友.水库群优化调度函数的人工神经网络方法研究[J].水科学进展,1995,6(1):53-60. 被引量:45
  • 4刘力,周建中,杨俊杰,刘芳,安学利.基于改进粒子群优化算法的新安江模型参数优选[J].水力发电,2007,33(7):16-19. 被引量:8
  • 5Kennedy J ,Eberhart R C. Particle Swarm Optimization. In: Proc.IEEE in-ternational Conf. on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, IV: 1995. 1942-1948
  • 6Shi Y H, Eberhart R C,Chen Y B. Design of Evolutionary Fuzzy Expert system [A]. In: Proc, of 1997 Artificial Neural Networks in Engineering Conf, St, Louis, Nov, 1997
  • 7Fukuyama Y. Fundamental of particle swarm techniques. Lee K Y, El-Sharkaei MA. Mo-dern Heuristic Optimization Techniques With Applications to Powr Systems, IEEE Power Engineering Society, 2002. 45-51
  • 8Shi Y, Eberhart R C. Empirical study of particle swarm optimization. In: Proc. of the Congress on Evolutionary Computation. Seoul, Korea,2001
  • 9Shi Y H, Eberhart R C, A Modified Particle Swarm Optimizer.In: IEEE In-ternational Conf, on Evolutionary Computation, Anchorage, Alaska, May 1998
  • 10Angeline P. Using Selection to Improve Particle Swarm Optimization. In:Proc. of IJCNN'99. Washington,USA,1999.84-89

共引文献21

同被引文献41

  • 1王忠贵,罗亚中.高维复杂函数的混合模拟退火全局优化策略[J].计算机工程与应用,2004,40(23):36-39. 被引量:6
  • 2Sung W T, Tsai M H. Data fusion of multi-sensor for IOT precise measurement based on improved PSO algorithms [J]. Com- puters & Mathematics with Applications, 2012, 64 ( 5 ): 1450-1461.
  • 3Rodger J A. Toward reducing failure risk in an integrated vehi- cle health maintenance system: A fuzzy multi-sensor data fusion Kalman filter approach for IVHMS[J]. Expert Systems with Applications, 2012, 39 (10): 9821-9836.
  • 4Yuan M, Jiang Y, Shen Y, et al. Task allocation of multi-robot systems based on a novel explosive immune evolutionary algo- rithm [J]. Applied Mechanics and Materials, 2013 (246): 331-335.
  • 5Yuan M, Ye Z, Cheng S, et al. A novel small-world algorithm incorporating chaos optimization and its application to robot path planning [J]. Journal of Systems and Control Engineering, 2012, 226 (10): 1356-1370.
  • 6Duma M, Marwala T, Twala B, et al. Partial imputation of un- seen records to improve classification using a hybrid multi-la- yered artificial immune system and genetic algorithm [J]. Applied Soft Computing, 2013, 13 (12): 4461-4480.
  • 7于万霞,张维存,郑宏兴.基于遗传粒子群算法的高维复杂函数优化方法[J].计算机工程与应用,2007,43(36):31-33. 被引量:7
  • 8袁晓光,杨万海,史林.应用免疫策略的多传感器决策融合设计[J].电子科技大学学报,2009,38(1):117-121. 被引量:1
  • 9王联国,施秋红.人工鱼群算法的参数分析[J].计算机工程,2010,36(24):169-171. 被引量:33
  • 10李莉,高冰.自适应加权数据融合加权因子的动态调整[J].战术导弹技术,2011(3):109-111. 被引量:5

引证文献5

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部