期刊文献+

共生进化算法母体选择策略性能研究及改进

Research on parents selection method in symbiotic evolutionary algorithm
下载PDF
导出
摘要 轮盘赌在传统遗传算法中能加快进化速度和提高解质量,以共生进化算法求解一个复杂的柔性作业调度为例,跟踪共生种群进化过程。研究轮盘赌在以求得最优组合为目标的共生进化算法中对种群进化速度、种群多样性以及解质量的影响。为提高种群进化的解质量,引入了Worst策略。仿真实验表明,轮盘赌在共生进化算法中的应用不能促进解质量的提高,Worst策略能有效调节种群的进化速度并能提升解质量。 Roulette wheel method is often adopted in traditional genetic algorithm to improve evolution speed and solution quality.Jobs with high production flexibility will lead to much more process plans and enhance the difficulty of scheduling problem. The optimality of job shop scheduling depends on the result of process planning.Symbiotic Evolutionary Algorithm(SEA) is a good alternative for dealing with the problem usually.A complex job shop scheduling problem is selected as the test-bed problem for symbiotic evolutionary algorithm to test and compare the performance of two parents selection operations,random and roulette wheel methods.The experimental results show the ineffectiveness of roulette wheel method selection both in accelerating evolution speed and improving solution quality.To improve SEA performance, "Worst strategy" is proposed to adjust the evolution process and shows better performance for different test-bed problems.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第11期49-52,55,共5页 Computer Engineering and Applications
基金 国家自然科学基金No.60603007~~
关键词 轮盘赌 作业调度 共生进化算法 roulette wheel job shop scheduling problem Symbiotic Evolutionary Algorithm(SEA)
  • 相关文献

参考文献12

  • 1Kim Y K,Park K,Ko J.A symbiotic evolutionary algorithm for the integration of process planning and job shop seheduling[J].Computers and Operations Research,2003,30(8):1151-1171.
  • 2Yamada T,Nakano R.Genetic algorithms for job-shop scheduling problems[C]//Proc of Modem Heuristic for Decision Support, UNICOM Seminar, 1997:67-81.
  • 3Kim J Y,Kim Y K.Multileveled symbiotic evolutionary algorithm: application to FMS loading problems[J].Applied Intelligence,2005,22 ( 3 ) : 233-249.
  • 4Dawson C W,See L M.Symbiotic adaptive neuro-evolution applied to rainfall-runoff modeling in northern England[J].Neural Networks, 2006,19(2) : 236-247.
  • 5Kim Y K.A set of data for the integration of process planning and job shop scheduling[EB/OL]. (2003).http ://syslab.chonnam.ac. kr/linkddata-pp&s.doc
  • 6迟彬,行飞,叶庆凯.用改进的遗传算法求解流水车间作业排序问题(英文)[J].北京大学学报(自然科学版),2003,39(3):293-300. 被引量:4
  • 7Bierwirth C,Matffeld D C,Kopfer H.On permutation representations for scheduling problems[C]//Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, 1996.
  • 8Bierwirth C,Mattfeld D C.Production scheduling and rescheduling with genetic algorithms[J].Evolutionary Computation, 1999,7( 1 ): 1-18.
  • 9GiSer B,Thompson G.Algorithms for solving production scheduling problem[J].Operations Research, 1960,8:487-503.
  • 10Bierwirth C,Mattfeld D C.Production scheduling and rescheduling with genetic algorithms[J].Evolutionary Computation,1999,7:1-17.

二级参考文献8

  • 1Christopher G L. Using the Genetic Algorithms with Comectionist Learing. In: Artificial Life II.Reading, MA : Addison-Wesley, 1991.
  • 2Richard K B. Evolving Networks: Using the Genetic Algorithms with Connectionist Learning. In: Artificial Life II ,Reading, MA : Addison-Wesley, 1991.
  • 3Grefenstette J J, Gopal R. Genetic Algorithms for Travelling Salesman Problem. In: Processing of the 1^st International Conference on Genetic Algorithms and Their Application. Pittsburgh, P A, 1985,160- 168.
  • 4Tony K A. Adaptive System Design: A Genetic Approach. IEEE Trans on System, Man and Cybernetics, 1980,10(9) :566 - 574.
  • 5Kristinsson K, Dumont G A. System Identification and Control using Genetic Algorithms. IEEE Trans on System, Man and Cybernetics, 1992,22(5):1 033- 1 046.
  • 6Tsujimura Y, Gen M, Kubota E. Flow-shop Scheduling with Fuzzy Processing Time Using Genetic Algorithms. In: The 11^th Fuzzy Systems Symposium. Okinawa, 1995,248 - 252.
  • 7Reeves C. A Genetic Algorithm for Flow Shop Sequencing. Computers and Operations Research, 1995,22( 1 ) :5 - 13.
  • 8Srnivas M, Patnaik L M. Adaptive Probability of Crossover and Mutation in Genetic Algorithm. IEEE Trans on SMC,1994,24(4) :656 - 667.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部