期刊文献+

基于模拟退火算法的多道逆向蚁群算法 被引量:2

Multiple converse ant colony algorithm based on simulated annealing
下载PDF
导出
摘要 为克服现有蚁群算法运算过程中易出现停滞现象、收敛速度慢等缺点,提出了一种基于模拟退火策略的多道逆向蚁群算法。通过向原始蚁群中引入逆向蚂蚁,并结合模拟退火思想确定蚁群中逆向蚂蚁的数目,来提高算法全局寻优能力。在算法执行过程中一组蚂蚁分成几群并行运算,通过交换策略,有效地利用了当前最优解,提高了算法收敛速度。将该算法应用于旅行商问题的求解,仿真实验结果表明该算法的全局寻优能力和收敛速度都得到了很大改善。 In order to get over the disadvantages of stagnation behavior and the slow convergence speed,a multiple converse ant colony algorithm based on simulated annealing is proposed.Inducting converse ants into the ant colony and the number of converse ants is adjusted by simulated annealing,the ability of searching for global optimal solution can be improved.Parallel running of a group of colonies are used in such a way that they can share their information effficiently,this information can be utilized by colonies via an exchange colonies,the ability of stagnation behavior can be improved.Using this algorithm to solve the traveling salesman problem shows that the ability of optimization and the convergence speed have improved a lot.
出处 《计算机工程与应用》 CSCD 北大核心 2009年第11期53-55,共3页 Computer Engineering and Applications
基金 "泰山学者"建设工程专项经费资助 山东省自然科学基金重大项目No.Z2004G02 山东省中青年科学家奖励基金资助项目(No.03BS003) 山东省教育厅科技计划项目(No.J05G01)~~
关键词 蚁群算法 模拟退火 旅行商问题 多道蚁群算法 ant colony algorithm simulated annealing traveling salesman problem multiple ant colony algorithms
  • 相关文献

参考文献10

  • 1Colorni A,Dorigo M,Maniezzo V,et al.Distributed optimization by ant colonies[C]//Proceedings of the 1st European Conference on Artificial Life, 1991 : 134-142.
  • 2Colorni A, Dorigo M, Maniezzo V.An investigation of some properties of an ant algorithm[C]//Proc of Parallel Problem Solving from Nature(PPSN ).France: Elsiver, 1992 : 509-520.
  • 3Dorigo M.Optimization,learning and natural algorithms[D].Italy:Politecnio Dimilano, 1992.
  • 4Dorigo M,Maniezzo V,Colorni A.Ant system:optimization by a colony of cooperating agents[J].IEEE Transaction on System,Man, and Cybernetics:Part B, 1996,26( 1 ) :29-41.
  • 5Maniezzo V,Colorni A,Dorigo M.The ant system applied to the quadratic assignment problem.Technical Report IRIDIA/94-28, IRIDIA[R].Belgium:Universite Libre de Brnxelles,1994.
  • 6Colorni A,Dorigo M,Maniezzo V,et al.Ant system for job shop scheduling[J].Belgian J of Operation Research Statistics and Computer Science, 1994,34( 1 ) : 39-53.
  • 7Bullnlieimer B,Hartl R F,Stranss C.Technical Report POM-10/ 97,An improved ant system algorithm for the vehicle routing problem[R].Austria:Institute of Management Science,University of Vienna, 1997.
  • 8刘玉霞,王萍,修春波.基于模拟退火策略的逆向蚁群算法[J].微计算机信息,2006,22(12S):265-267. 被引量:10
  • 9EUabih I,Calamai P,Basir O.Exchange strategies for multiple ant colony systera[J].Information Science,2007,177:1248-1264.
  • 10DORIGO M,STUTZLE T.蚁群优化[M].北京:清华大学出版社,2007:250-263.

二级参考文献7

  • 1徐精明,曹先彬,王煦法.多态蚁群算法[J].中国科学技术大学学报,2005,35(1):59-65. 被引量:66
  • 2胡利平,许永城,高文,胡亮.蚁群神经网络在鱼病专家系统中的应用研究[J].微计算机信息,2005,21(07X):149-151. 被引量:11
  • 3Dorigo M,V Maniezzo,A Colorni.The ant system:Optimization by a colony of cooperating agents[J].IEEE Transactions on Systems,Man,and Cybernetics Part B,1996,26(1):29-41.
  • 4Dorigo M,Gambardella C.Ant colony system:a cooperative learning approach to the traveling salesman problem[J].IEEE Trans Evolution Compute,1997,1(1):53-66.
  • 5T Stutzle and H Hoos,MAX-MIN Ant System and Local Search for Traveling Salesman Problem[A].In T.Baeck,Z.Michalewicz,and X.Yao,editors,Proceedings of the IEEE International Conference on Ebolutionary Computation (ICEC' 97),1997:309-314.
  • 6D Costa and A Hertz.Ants can color graphs[J].Journal of the operational Research Society,1997,48:295-305.
  • 7Eilon S and Christofides N.Distribution management:mathematical modeling and practical analysis.Operational Research Quarterly,1969.20:309-319.

共引文献25

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部