期刊文献+

高效的时间序列下界技术 被引量:4

Efficient time series lower bounding technique
下载PDF
导出
摘要 针对时间序列数据,提出一种新的基于动态时间弯曲的下界技术,该技术首先基于分段聚集近似的线性表示对原始序列进行降维,同时生成查询序列的网格最小边界矩形近似表示,然后利用基于动态时间弯曲距离对两者下界距离度量。实验结果表明,该下界技术与以往相关技术相比,能够产生更大的下界距离,具有更强的紧凑度、裁剪搜索空间能力以及更短的运行时间,有利于时间序列数据挖掘。 An efficient lower bounding technique is proposed based on Dynamic Time Warping (DTW) for time series similarity search,which measures the distance between original sequence reduced dimensionality by Piecewise Aggregate Approximation(PAA) approximation method and query sequence reduced dimensionality by Grid Minimum Bounding Rectangle (GMBR) representation approach.Experimental results show that,comparing with related techniques past,the proposed technique yields bigger lower bounding distance,more tightness of bound,stronger power pruning ability and shorter run time,in favor of time series data mining.
作者 穆斌 闫金来
出处 《计算机工程与应用》 CSCD 北大核心 2009年第11期168-171,共4页 Computer Engineering and Applications
基金 国家科学技术部2007年度国际科技合作与交流专项经费项目No.2007DFA11110~~
关键词 时间序列 动态时间弯曲 下界 网格最小边界矩形 time series Dynamic Time Warping(DTW) lower bounding Grid Minimum Bounding Rectangle (GMBR)
  • 相关文献

参考文献15

  • 1Hart J,Kamber M.Data mining:concepts and Techniques[M].2nd ed.Beijing:China Machine Press,2007.
  • 2Chen L,Ng R.On the marriage of Lp-norms and edit distance[C]// Proc of the 30th Very Large Data Bases Conference,Toronto,Canada, 2004 : 792-803.
  • 3Keogh E,Pazzani M.A simple dimensionality reduction technique for fast similarity search in large time series databases[C]//Proc of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Current Issues and New Applications,London,UK,2000:122-133.
  • 4孙梅玉,唐漾,方建安.一种基于MBR的高效的时间序列表示方法[J].计算机工程与应用,2008,44(16):135-138. 被引量:2
  • 5Keogh E.Exact indexing of dynamic time warping[C]//Proc of the 28th International Conference on Very, Large Data Bases,Hong Kong,China,2002:406-417.
  • 6Chen L,Ozsu M T,Oria V.Robust and fast similarity search for moving object trajectories[C]//Proc of the 2005 ACM SIGMOD International Conference on Management of Data,Baltimore,Maryland, 2005 : 491-502.
  • 7Vlachos M,Kollios G,Gunopulos D.Discovering similar multidimensional trajectories[C]//Proc of the 18th International Conference on Data Engineering,San Jose,CA,2002:673-684.
  • 8Agrawal R,Faloutsos C,Swami A.Efficient similarity search in sequence databases[C]//Proc of 4th Int Conf of Foundations of Data Organization and Algorithms, London, UK, 1993 : 69-84.
  • 9Chan K,Fu A.Efficient time series matching by wavelets[C]//Proc of the 15th International Conference on Data Engineering,Washington, DC, USA, 1999 : 126-134.
  • 10Faloutsos C, Ranganathan M, Manolopoulos Y.Fast subsequence matching in time-series databases[C]//Proc of the 1994 ACM SIGMOD International Conference on Management of Data,Minnesota, USA, 1994 : 419-429.

二级参考文献14

  • 1潘定,沈钧毅.时态数据挖掘的相似性发现技术[J].软件学报,2007,18(2):246-258. 被引量:41
  • 2Rafiei D,Mendelzon A.Similarity-based queries for time series data[C]//Proceedings of ACM SIGMOD Int'l Conference on Management of Data,Tucson,Arizona,May 1997,1997:13-25.
  • 3Pavlidis T,Horowitz S.Segmentation of plane curves[J].IEEE Transactions on Computers, 1974,C-23(8).
  • 4Faloutsos C,Ranganathan M,Manolopoulos Y.Fast subsequence matching in time-series databases[C]//Proceedings of ACM SIGMOD Int'l Conference on Management of Data,Minneapolis,Minnesota,May 1994,1994:419-429.
  • 5Keogh E,Kasetty S.On the need for time series data mining benchmarks:a survey and empirical demonstration[J].Data Mining and Knowledge Discovery,2003,7(4):349-371.
  • 6Agrawal R,Faloutsos C,Swami A.Efficient similarity search in sequence databases[C]//Proceedings of Foundations of Data Organizations and Algorithms( FODO ), Evanstone, Illinois, October 1993, 1993 : 69-84.
  • 7Chan K,Fu A W.Efficient time series matching by wavelets[C]// Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, Australia, March 23-26,1999 : 126-133.
  • 8Keogh E,Chakrabarti K,Pazzani M.Locally adaptive dimensionality reduction for indexing large time series databases[C]//Proceedings of ACM SIGMOD Conference Onmanagement of Data,Santa Barbara,May 21-24,2001 : 151-162.
  • 9Geurts P.Pattern extraction for time series classification [C]//Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery,Freiburg,2001,Germany,2001: 115-127.
  • 10Korn F,Jagadish H,Faloutsos C.Efficiently supporting ad hoc queries in large datasets of time sequences[C]//Peckham J.Pmc of the ACM SIGMOD Int'l Conf on Management of Data.Tucson: ACM Press, 1997:289-300.

共引文献1

同被引文献33

  • 1张明波,陆锋,申排伟,程昌秀.R树家族的演变和发展[J].计算机学报,2005,28(3):289-300. 被引量:95
  • 2李爱国,覃征.大规模时间序列数据库降维及相似搜索[J].计算机学报,2005,28(9):1467-1475. 被引量:20
  • 3Vlachos M, Hadjieleftheriou M, Gunopulos D, et al. Indexing Mul- tidimensional Time-Series. The International Journal of Very Large Data Bases, 2006, 15(1) : 1 -20.
  • 4Agrawal R, Faloutsos C, Swami A. Efficient Similarity Search in Sequence Databases// Proc of the 4th International Conference on Foundations of Data Organization and Algorithms. Chicago, USA, 1993 : 69 - 84.
  • 5Berndt D J, Clifford J. Using Dynamic Time Warping to Find Patterns in Time Series//Proe of the Workshop on Knowledge Discovery in Databases, Seattle, USA, 1994: 229- 248.
  • 6Vlachos M, Hadjieleftheriou M, Gunopulos D, et al. indexing Multi-Dimensional Time-Series with Support for Multiple Distance Measures// Proc of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003:216 -225.
  • 7Li Chuanjun, Zhai Peng, Zheng Siqing, et al. Segmentation and Recognition of Multi-Attribute Motion Sequences//Proc of the 12th Annual ACM International Conference on Multimedia. New York, USA, 2004 : 836 - 843.
  • 8Kadous M W. High-Quality Recordings of Australian Sign Lan- guage Signs [ EB/OL ]. [ 2009-11-6 ]. http://kdd, ics. uci. edu/ databases/auslan 2/auslan. html.
  • 9Begleiter H. EEG Database [ EB/OL ]. [ 2009-1 !-6 ]. http:// kdd. ics. uci. edu/databases/eeg / eeg. html.
  • 10Lopes L S, Camarinha-Matos L M. Robot Execution Failures[ EB/OL]. [ 2009-11-6]. http ://kdd. ics. uci. edu/databases/robotfail- ure/roboffailure, html.

引证文献4

二级引证文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部