摘要
G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的映射.如果uv∈E(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全色数.本文给出了扇与星、路、圈间的多重联图的邻点可区别E-全色数.其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
Let G(V,E) be a simple graph,k be a positive integer,f be a mapping from V(G) ∪E(G) to {1, 2,…,k}. If arbitary uv∈E(G),we have f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v). Then f is called the adjacent vertex-distinguishing E-number of G. The minimal number or k is called the adjacent vertex-distinguishing E-total chromatic number of G. The adjacent vertex-distinguishing E-total chromatic number of the multiple join graph of fan, star,path and cycle is obtained in the paper,where C(u)= {f(u)} ∪ {f (uv) | uv∈ E(G) }.
出处
《兰州交通大学学报》
CAS
2009年第1期149-152,156,共5页
Journal of Lanzhou Jiaotong University
基金
国家自然科学基金(No.10771091)
甘肃省教育厅科研基金资助(No.0604-05)
兰州交通大学教改课题(2008-65)
关键词
多重联图
邻点可区别E-全染色
邻点可区别E-全色数
multiple join graph
adjacent vertex-distinguishing E-total coloring
adjacent vertex-distinguishing E-total chromatic number