期刊文献+

G-凸空间上的向量极小极大定理(Ⅱ)

Minmax Theorems For Vector-valued Mappings on G-Convex Spaces(Ⅱ)
下载PDF
导出
摘要 在没有线性结构的G-凸空间引进向量值映射的自然拟凹的概念,得到它的一个性质,并利用数值化方法及不动点定理,讨论涉及自然拟凹映射与拟凹映射的向量极小极大定理。 The natural quasi-concave mapping on G-convex space is introduced and its property is shown.Using the scalarization method and fixed point theorem,minimax theorems for quasi-concave mapping and natural quasi-concave mapping are established.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2009年第1期17-19,共3页 Journal of Nanchang University(Natural Science)
关键词 G-凸空间 自然拟凹映射 不动点定理 向量极小极大定理 G-convex space natural quasi-concave mapping fixed point theorem minimax theorem
  • 相关文献

参考文献8

  • 1Fan K. Mimimax Theorem[ J ]. Proc Nat Acad Sci, 1953, 39 : 42 - 47.
  • 2Li Z F, Wang S Y. A Type of Minimax Inequality for Vector Valued Mappings [ J ]. J Math Anal Appl, 1998,227 : 68 - 80.
  • 3Ferro F. A Minimax Theorem for Vector - Valued Functions [ J ]. J Optimi Theory Appl, 1989,60:19 - 31.
  • 4Tanaka T. Generalized Quasiconvexities, Cone Saddle Points, and Minimax Theorems for Vector - valued Functions[ J]. J. Optimi Theory Appl, 1994,81:355 - 377.
  • 5罗贤强,傅俊义.G凸空间上的向量极小极大定理[J].南昌大学学报(理科版),2004,28(3):233-235. 被引量:1
  • 6Park S, Kim H. Admissible Classes of Muhifunctions on Generalized Convex Spaces[J]. Proc Coil Natur Sci Snu, 1993,18:1-21.
  • 7Gerstewitz C. Nichtkonvexe Trennungssatze Und Deren Anwendung in Der theorie Der Vektoroptimierung [ J ]. Seminarberichte Seckt. math, 1986,80 : 19 - 31.
  • 8Lin L J, Park S. On Some Generalized Quasi - Equilibrium Problems [ J ]. Journal of Mathematical Analysis and Applications, 1998,224 : 167 - 181.

二级参考文献7

  • 1Aubin J P and Ekeland I. Applied Nonlinear Analysis[M].Wiley,New York,1984.
  • 2Fan K.Minimax Theorem[J].Proc Nat Acad Sci,1953,39:42-47.
  • 3Ferro F.A Minimax Theorem for Vector-Valued Function[J].J Optimi Theory Appl,1989,60:19-31.
  • 4Li Z F and Wang S Y.A Type of Minimax Inequality for Vectro-Valued Mappings[J].J Math Anal Appl,1998,227:68-80.
  • 5Bardaro C and Ceppitelli R,Some Further Generalizations of Knaster-Kuratowski-Mazurkiewicz Theorem and Minimax Inequalities[J].J Math Anal Appl,1988,132:484-490.
  • 6Park S and Kim H,Admissible Classes of Multifunctions on Generalized Convex Spaces[J].Proc Coll Natur Sci SNU,1993,18:1-21.
  • 7Park S,Some Equilibrium Problems in Generalized Convex Spaces[J].Acta Math Vietnamica,2001,26:349-364.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部