期刊文献+

成比例反向失效率混合模型中的随机比较 被引量:1

Stochastic comparisons in proportional reversed hazard rate mixing model
下载PDF
导出
摘要 成比例反向失效率混合模型可表示为G(x)=E[F(x)θ],其中,G为总体变量Y的分布函数,θ为随机比例参数,F为基本分布函数。研究了θ分布函数的不同选择所对应的成比例反向失效率混合模型之间的随机比较。证明了θ和Y是正似然比相依的。 The proportional reversed hazard mixing model can be expressed as G(x)= E[F(x)^θ], where G is the distribution function of the overall population random variable Y, θ is random proportionality parameter, F(x) is the baseline distribution function. Stochastic comparisons in the proportional reversed hazard mixing models arising from different choices of the distribution of θ were studied. It is shown that θ and Y are positively likelihood ratio dependent.
作者 凌晓亮 李娉
出处 《河北科技大学学报》 CAS 北大核心 2009年第1期11-12,74,共3页 Journal of Hebei University of Science and Technology
基金 河北科技大学科研基金资助项目(XL200816)
关键词 混合 成比例反向失效率 正相依 随机序 mixtures proportional reversed hazard rate positive dependence stochastic orders
  • 相关文献

参考文献14

  • 1GUPTA R C,GUPTA R D,GUPTA P L. Modelling failure time data by Lehmann alternatives[J]. Communications in Statistics-Theory and Methods, 1998,27(4) : 887-904.
  • 2MUDHOLKAR G S,SRIVASTAVA D K. Exponentiated Weibull family for analyzing bathtub failure-rate data[J], IEEE Transactions on Reliability,1993,42(2) :299-302.
  • 3MUDHOLKAR G S, HUTSON A D. The exponentiated Weibull family:Some properties and a flood data application[J]. Communications in Statistics-Theory and Methods, 1996,25(12) :3 059-3 083.
  • 4CRESCENZO A D. Some results on the proportional reversed hazards model[J]. Statistics and Probability Letters,2000,50(4) :313-321.
  • 5GUPTA R C,GUPTA R D, Proportional reversed hazard rate model and its applications[J]. Journal of Statistical Planning and Inference, 2007,37(11) :3 525-3 536.
  • 6GUPTA R C,WU H. Analyzing survival data by proportional reversed hazard model[J]. Internat J Reliability and Appl, 2001,2 (1) :1-26.
  • 7SHAKED M,SHANTHIKUMAR J G. Stochastic Orders and their Applications[M]. San Diego:Academic Press, 1994.
  • 8SHAKED M, SHANTHIKUMAR J G. Stochastic Orders[M]. New York : Springer Press, 2007.
  • 9MULLER A,STOYAN D. Comparison Methods for Stochastic Models and Risks[M]. New York:Wiley Press,2002.
  • 10HU T,KUNDU A, NANDA A K. A note on bayesian imperfect repair model[J]. Journal of Applied Statistical Science, 2007,15 (4) :407- 411.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部