期刊文献+

曲率效应对扶手椅型碳纳米管电子性质的影响 被引量:1

Curvature effect on electronic properties of armchair carbon nanotubes
下载PDF
导出
摘要 在考虑曲率效应对扶手椅型碳纳米管(SWNT)最近邻碳原子交叠积分影响的情况下,利用紧束缚模型和玻恩-卡门边界条件解析地推导扶手椅型SWNT的能带、态密度和电子公有化运动速度.对扶手椅型SWNT电子性质的分析发现:考虑曲率效应后扶手椅型SWNT仍然是金属管,但其能带的总能减小,其态密度的导电平台变窄且其电子公有化运动速度变小. Considering the curvature effect on hooping of nearest-neighboring carbon atoms of armchair carbon nanotubes ( SWNT), the energy band, density of state and velocity of electron of armchair SWNT were analytically derived by using the tight-binding model and Born-Karman boundary condition. Analyzing the electronic properties mentioned above, it is found that if considering the curvature effect, the armchair SWNT is still metal, but its total energy decreases. The conductive platform narrows and the electron velocity of armchair carbon nanotube decreases.
出处 《南京工业大学学报(自然科学版)》 CAS 北大核心 2009年第2期73-76,共4页 Journal of Nanjing Tech University(Natural Science Edition)
基金 国家自然科学基金资助项目(10804051)
关键词 扶手椅型碳纳米管 曲率效应 紧束缚模型 armchair carbon nanotubes curvature effect tight-binding model
  • 相关文献

参考文献18

  • 1Ando T. Theory of electron states and transport in carbon nanotubes[J]. J Phys Soc Jpn, 2005,74(3):777-817.
  • 2Zhang Y, Yu G L, Dong J. Aharonov-Bohm interference and beating in deformed carbon nanotubes[ J]. Phys Rev B, 2006, 73(20) : 205419.
  • 3Qin L C, Zhao X L, Hirahara K, et al. The smallest carbon nanotube[J]. Nature, 2000, 408(2): 50.
  • 4Wang L, Tang Z K, Li G D, et al. Single-walled 4A° carbon nanotube arrays[J]. Nature, 2000, 408(2) : 50 -51.
  • 5Zhao X, Liu Y, Inoue S, et al. Smallest carbon nanotube is 3A° in diameter[J]. Phys Rev Lett, 2004, 92(12) : 125502.
  • 6Ouyang M, Huang J L, Cheung C L, et al. Energy gap in 'metallic' single-walled carbon nanotubes[J]. Science, 2001, 292 (7) : 702 - 705.
  • 7Kleiner A, Eggert S. Curvature, hybridization, and STM images of carbon nanotubes[ J]. Phys Rev B, 2001, 64 (11 ) : 113402.
  • 8Kleiner A, Eggert S. Band gaps of primary metallic carbon nanotubes[J]. Phys Rev B, 2001, 63(7) : 073408.
  • 9Zhang Y, Yu G L, Hu F L, et al. Quantum interference in carbon nanotube electron resonators induced by an axial magnetic field[J]. J Phys Condens Matter, 2006, 18(3) : 2149 -2156.
  • 10Zhang Y, Liang Q F, Dong J. Electron transport in carbon nanotube quantum dots in an axial magnetic field [ J ]. Phys Lett A, 2008, 372 (46) : 6996 - 7000.

同被引文献31

  • 1刘海军,方刚,曾攀.基于晶体塑性理论的大变形数值模拟技术[J].塑性工程学报,2006,13(2):1-8. 被引量:4
  • 2Iijima S. Helical microtubules of graphitic carbon [ J ]. Nature, 1991,354:56-58.
  • 3Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes[J]. Nature, 1996,381:678-680.
  • 4Shen L X, Li J. Transversely isotropic elastic properties of muhiwalled carbon nanotubes [J]. Physical Review B, 2005,71 (3) :035412.
  • 5Kuzumaki T, Miyazawa K, Ichinose H, et al. Processing of carbon nanotube reinforced aluminum composite [ J ]. Journal of Materials Research, 1998,13 : 2445-2449.
  • 6Esawi A, Morsi K, Sayed A, et al. Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites [J]. Composites Science and Technology, 2010,70(16) :2237-2241.
  • 7Bakshi S R, Lahiri D, Agarwal A. Carbon nanotube reinforced metal matrix composites : a review [ J ]. International Materials Reviews,2010,55( 1 ) :41-64.
  • 8Jia Y, Peng K, Gong X L, et al. Creep and recovery of polypropylene/carbon nanotube composites [ J ]. International Jouinal of Plasticity,2011,27 (8) : 1239-1251.
  • 9Xia Z, Riester L, Curtin W A, et al. Direct observation of toughening mechanisms in carbon nanotube ceramic matrix composites[ J] .Acta Materialia,2004,52(4) :931-944.
  • 10Esawi A, Morsi K. Dispersion of carbon nanotubes ( CNTs ) in aluminum powder [ J ]. Composites Part A : Applied Science and Manufacturing, 2007,38 (2) : 646-650.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部