期刊文献+

Asymptotic Formulas for Thermography Based Recovery of Anomalies

Asymptotic Formulas for Thermography Based Recovery of Anomalies
下载PDF
导出
摘要 We start from a realistic half space then use to develop a mathematical asymptotic model for thermal imaging, which we analysis well suited for the design of reconstruction algorithms. We seek to reconstruct thermal anomalies only through their rough features. With this way our proposed algorithms are stable against measurement noise and geometry perturbations. Based on rigorous asymptotic estimates, we first obtain an approximation for the temperature profile which we then use to design noniterative detection algorithms. We show on numerical simulations evidence that they are accurate and robust. Moreover, we provide a mathematical model for ultrasonic temperature imaging, which is an important technique in cancerous tissue ablation therapy. We start from a realistic half space model for thermal imaging,which we then use to develop a mathematical asymptotic analysis well suited for the design of reconstruction algorithms.We seek to reconstruct thermal anomalies only through their rough features.With this way our proposed algorithms are stable against measurement noise and geometry perturbations.Based on rigorous asymptotic estimates,we first obtain an approximation for the temperature profile which we then use to design noniterative detection algorithms.We show on numerical simulations evidence that they are accurate and robust.Moreover,we provide a mathematical model for ultrasonic temperature imaging,which is an important technique in cancerous tissue ablation therapy.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2009年第1期18-42,共25页 高等学校计算数学学报(英文版)
基金 supported by the ANR project EchoScan(AN-06-Blan-0089) the NSF grant DMS 0707421.
关键词 THERMOGRAPHY imaging asymptotic formulas small anomalies direct imaging algorithms half-space problem. 热异常 渐近公式 数学模型 重建算法 温度分布 测量噪声 渐近估计 数值模拟
  • 相关文献

参考文献12

  • 1Toshiro Yahara,Toshihiro Koga,Shougo Yoshida,Shino Nakagawa,Hiroko Deguchi,Kazuo Shirouzu.Relationship Between Microvessel Density and Thermographic Hot Areas in Breast Cancer[J].Surgery Today.2003(4)
  • 2J. C. Lantis II,K. L. Carr,R. Grabowy,R. J. Connolly,S. D. Schwaitzberg.Microwave applications in clinical medicine[J].Surgical Endoscopy.1998(2)
  • 3T.YAHARA,T.KOGA,S.YOSHIDA,S.NAKAGAWA,H.DEGUCHI,K.SHIROUZU.Relationship between microvessel density and thermographic hot areas in breast cancer[].Surgery Today.2003
  • 4H.AMMARI,O.KWON,J.K.SEO,E.J.WOO.T-scan electrical impedance imaging system for anomaly detection[].SIAM Journal on Applied Mathematics.2005
  • 5H.BREZIS.Analyse Fonctionnelle:Théorie et Applications[]..1992
  • 6N.R.MILLER,J.C.BAMBER,G.R.TER HAAR.Ultrasonic temperature imaging for the guidance of thermal ablation therapies:in vitro results[].IEEE Ultrasonic Symposium.
  • 7W.C.AMALU,W.B.HOBBINS,R.L.ELLIOT.Infrared imaging of the breast-An overview[].Medical Devices and Systems.2006
  • 8H.AMMARI.An Introduction to Mathematics of Emerging Biomedical Imaging[].Math & Appl.2008
  • 9H.AMMARI,P.GARAPON,H.KANG,H.LEE.A method of biological tissues elasticity reconstruction using magnetic resonance elastography measurements[].Quarterly of Applied Mathematics.2008
  • 10H.AMMARI,E.IAKOVLEVA,H.KANG,K.KIM.A direct algorithm for thermal imaging of small inclusions[].SIAM JMultModelSimul.2005

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部