期刊文献+

一种基于支持向量数据域描述的改进微粒群算法

A Modified Particle Swarm Optimization Algorithm Based on Support Vector Domain Description
下载PDF
导出
摘要 分析标准微粒群算法的性能,通过引入支持向量数据域描述方法,提出一种改进微粒群算法,保证进化过程的多样性,增强了算法的全局寻优能力。仿真结果表明,改进的算法得到了较好的效果。 Behavior of standard particle swarm optimization algorithm is analyzed. By using the support vector domain description, a modified PSO algorithm is presented. Diversity of particles ,is assured. Ability of global searching is improved. Simulation indicates that the modified PSO algorithm can get better performance.
作者 童子建
出处 《计算机与现代化》 2009年第4期55-58,共4页 Computer and Modernization
关键词 微粒群 多样性 支持向量描述 particle swarm optimization diversity support vector domain description
  • 相关文献

参考文献8

  • 1Kennedy J, Eberhart R. Particle swarm optimization [ C ]// Proceedings of the IEEE International Conference on Neural Networks, 1995 : 1942-1948.
  • 2Shi Y, Eberhart R. A modified particle swarm optimizer [ C ]// Proceedings of the IEEE International Conference on Evolutionary Computation, 1998:69-73.
  • 3Riget J, Vesterstrom J S. A diversity-guided particle swarm optimizer-the ARPSO [ R ]. Technical Report 21XI2-02, Department of Computer Science, University of Aarhus, 2002.
  • 4Krink T, Vesterstrom J S, Riget J. Particle swarm optimisation with spatial particle extension [ C ]//Proceedings of the 2002 Congress on Evolutionary Computation, 2002: 1474-1479.
  • 5Aggarwal C C, Hinneburg A, Keim D A. On the surprising behavior of distance metrics in high dimensional space[ C ]// Lecture Notes in Computer Science, 2001:420-434.
  • 6Monson C K, Seppi K D. Adaptive diversity in PSO[C]// Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, 2006:59-66.
  • 7张晓缋,戴冠中,徐乃平.遗传算法种群多样性的分析研究[J].控制理论与应用,1998,15(1):17-23. 被引量:77
  • 8Tax D M J, Duin R P W. Support vector domain description[ J ]. Pattern Recognition Letters, 1999, 20 (11-13) : 1191-1199.

二级参考文献4

共引文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部