期刊文献+

基于滑动窗口的自适应网页预测模型 被引量:1

Sliding Window-Based Adaptive Web Prediction Modeling
下载PDF
导出
摘要 PPM模型广泛应用于Web预取技术,但大多数的PPM模型不具有自适应性,不能反映用户浏览模式的改变。通过对标准PPM模型的扩展,提出基于滑动窗口的自适应网页预测模型。该模型仅保留处于滑动窗口之内的最近访问序列,从而反映用户兴趣的变化,同时利用非压缩后缀树增量式添加新的用户请求和删除过时的浏览信息,以提高更新速度。实验表明,该模型能更准确地描述用户在Web上的浏览特征,在预取性能上明显地优于以往的模型。 Prediction by partial match (PPM) models are commonly used for web prefetching. But most of existing models are not adaptive and can not represent the change of user browsing behaviors. By extending the standard PPM model, we present an adaptive Web prediction model based on sliding window. The model only keeps the most recent requests by a sliding window to indicate user interest changing. In order to improve the updating speed, it makes use of non-compact suffix tree to incrementally insert the new user request and delete the outdated browsing information. Trace-driven experiments show that our model can significantly improve the prefetching performance.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2009年第2期249-252,共4页 Journal of University of Electronic Science and Technology of China
基金 教育部-英特尔信息技术专项科研基金(MOE-INTEL-08-10)
关键词 增量式更新 非压缩后缀树 PPM WEB预取 incremental update non-compact suffix tree PPM Web prefetching
  • 相关文献

参考文献10

  • 1Yan-Bo Han Zhi-Wei Xu Hai Zhuge.Preface[J].Journal of Computer Science & Technology,2006,21(4):465-465. 被引量:18
  • 2OSSA B, GIL J A, SAHUQUILLO J, et al. Improving web prefetching by making prediction at prefetch[C]// Proceedings of the 3rd EuroNGI Conference on Next Generation Internet Networks. Los Alamitos, CA: IEEE Computer Society Press, 2007: 21-27.
  • 3NANOPOULOS A, KATSAROS D, MANOLOPOULOS Y. A data mining algorithm for generalized web prefetching[J]. IEEE Transactions on Knowledge and Data Engineering, 2003(5(5): 1155-1169.
  • 4CHEN X, ZHANG X. Popularity-based PPM: an effective web prefetching technique for high accuracy and low storage[C]//Proeeedings of the International Conference on Parallel Processing. Los Alamitos, CA: IEEE Computer Society Press, 2002: 296-304.
  • 5DOMENECH J, GIL J A, SAHUQUILLO J, et al. Web prefetching performance metrics: a survey[J]. Performance Evaluation, 2006, 63(9): 988-1004.
  • 6BOURAS C, KONIDARIS A, KOSTOULAS D. Predictive prefetching on the web and its potential impact in the wide area[J]. World Wide Web, 2004, 7(2): 143-179.
  • 7PITKOW J, PIROLLI P. Mining longest repeating subsequences to predict World Wide Web surfing[C]// Proceedings of the second USENIX Symposium on Intemet Technologies and Systems. San Francisco: USENIX Association Press, 1999: 139-150.
  • 8PALPANAS T, MENDELZON A.Web prefetching using partial match prediction[C]//Proceedings of the Fourth Web Caching Workshop. San Diego, California: [s.n.], 1999.
  • 9DESHPANDE M, KARYPIS G. Selective markov models for predicting web page accesses[J]. ACM Transactions on Intemet Technology, 2004, 4(2): 163-184.
  • 10LARSSON N J. Extended application of suffix trees to data comprcssion[C]//Procccdings of the Conference on Data Compression. Los Alamitos, CA: IEEE Computer Society Press, 1996: 190-199.

共引文献17

同被引文献11

  • 1赵欣欣,索红光,刘玉树,张利萍.基于带权语义距离的网页预取方法[J].北京理工大学学报,2006,26(8):708-711. 被引量:2
  • 2Gediminas Adomavicius,Alexander Tuzhilin. Toward the Next Generation of Recommender Systems:a Survey of the State,of-the-art and Possible Extensions [ J ]. IEEE Transactions on Knowledge and Data Engineering ,2005,17 (6) :734-749.
  • 3Sean M McNee, John Riedl, Joseph A Konstan. Accurate Is Not always Good:How Accuracy Metrics Have Hurt Recommender Systems[ C]//Canada:Proceeding of CHI'06 Montreal ,2006:22-27.
  • 4Herlocker J L,Konstan J A,Terveen L G,et al. Evaluating Collaborative Filtering Recommender Systems[J]. ACM Trans Information Systems ,2004,22( 1 ) :5-53.
  • 5Chen Xin,Zhang Xiaodong. A Popularity-based Prediction Model for Web Prefetching[ J]. Computer,2003,36(3) :63-70.
  • 6Shi Lei, Gu Zhimin, Wei Lin, et al. Popularity-based Selective Markov Model [ C]//Beijing: IEEE/WIC/ACM International Conference on Web Intelligence ,2004:504-507.
  • 7Josep D,Julio S,Jose A Gil ,et al. About the Heterogeneity of Web Prefetching Performance Key Metrics[ C ]//IIFIP Conference on Intelligence in Communication Systems ,2004:220-235.
  • 8赵越,刘衍珩,李钊,余雪岗,顾剑,赵洋.基于客户端的网页预取模型[J].计算机工程与应用,2008,44(20):102-106. 被引量:5
  • 9班志杰,古志民,金瑜.Web预取技术综述[J].计算机研究与发展,2009,46(2):202-210. 被引量:19
  • 10于戈,王大玲,鲍玉斌,王丹,杨晓春,宋宝燕,王国仁.Internet上支持高质量E-Services的个性化技术的研究[J].计算机科学,2001,28(12):63-67. 被引量:5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部