摘要
随着电子商务的发展状大,缺乏个性化服务成为制约电子商务发展的关键问题。基于web数据挖掘的电子商务推荐系统可以满足电子商务未来发展趋势的需要。本文以一组数据为实例阐述了基于web数据挖掘的协同过滤推荐算法是如何进行数据表示、近邻查询以及推荐产生这三个阶段的有效实施的。
With the development of E-commerce the lack of personalized service has become the key obstacle to the development of electronic commerce. Web based data mining E-commerce recommendation system can meet the needs of future E-commerce development trends. In this paper, with one set of data as an example collaborative filtering recommendation algorithm was elaborated based on web data mining how to work in the progress of data express, neighbors queries and recommend generated.
出处
《贵州大学学报(自然科学版)》
2009年第1期40-43,共4页
Journal of Guizhou University:Natural Sciences
基金
国家863基金项目(2006AA04Z130)
国家自然基金(50475185
50575047)
关键词
WEB数据挖掘
电子商务
推荐系统
协同过滤
web data mining
E-commerce
recommendation systems
collaborative filtering