期刊文献+

一种新的视频运动对象分割技术 被引量:10

Novel moving object segmentation technique for video sequences
下载PDF
导出
摘要 本文将用于自然静态图像抠图领域的Knockout技术用于视频运动对象的精确分割,给出了一种新的视频运动对象分割方法。在利用积累差异技术自适应建立背景模型、采用背景差法初步提取当前帧视频对象区域的基础上,用本文提出的方法,自动标记原本采用Knockout技术进行抠图时,需手动进行标记的前景轮廓区域、背景轮廓区域及未知区域。在用本文方法完成对3个区域的自动标记后,再利用Knockout技术对当前帧的视频运动对象进行精确分割。本文还设计了一种新的变系数空域滤波器,该滤波器能有效地对背景差图像进行显著增强。同时,对Otsu自适应阈值化方法进行了改进,改进的方法能更准确地对背景差图像进行阈值化。 This paper applies Knockout technique to moving object segmentation, which is commonly used in image matting area, and a novel moving object segmentation technique is proposed. Based on the detection results obtained using accumulative differences, the foreground contour region, background contour region and unknown region are automatically marked, and then the Knockout method is applied to video object segmentation. A novel variable coefficient spatial filter is designed, which could effectively enhance the background difference image. Otsu method is improved, which could threshold the background difference image much more accurately. Experiment resultsshow that the proposed method can extract video object accurately and is also an effective method.
出处 《电子测量与仪器学报》 CSCD 2009年第3期76-80,共5页 Journal of Electronic Measurement and Instrumentation
关键词 KNOCKOUT 分割 积累差异 空域滤波器 视频抠图 OTSU Knockout segmentation accumulative difference spatial filter video matting Otsu
  • 相关文献

参考文献10

  • 1YANG T, LI S Z, PAN Q, et al. Real-time multiple object tracking with occlusion handling in dynamic scenes [ C ]. IEEE Computer Vision and Pattern Recognition Conference, 2005 : 970 -975.
  • 2CHIEN S Y,MA S Y,CHEN L G. Efficient moving object segmentation algorithm using background registration technique [ J ]. IEEE Transactions on Circuits and Systems for Video Technology,2002,12 (7) : 577-586.
  • 3BERMAN A, DARDOURIAN A, VLAHO P. Method for removing from an image the background surrounding a selected object [ P]. U. S. Patent,6134346, 2000.
  • 4BERMAN A, VLAHOS P, DADOURIAN A. Comprehensive method for removing from an image the background surrounding a selected object[ P]. U. S. Patent,6134345, 2000.
  • 5RAFAEL C. GONZALEZ. Digital image processing [ M ]. Beijing: Publishing House of Electronics Industry, 2002 : 626-630.
  • 6OSTU N. A threshold selection method from gray-Level histograms[ J ]. IEEE Transactions on System Man and Cybernetic, 1979,9 ( 1 ) :62-66.
  • 7CHUANG Y Y, CURLESS B, SALESIN D,et al. A bayesian approach to digital matting [ C ]. Proceedings of IEEE Computer Vision and Pattern Recognition,2001 : 264-271.
  • 8RUZON M A, T C. Alpha estimation in natural images [ C ]. Proceedings of IEEE Computer Vision and Pattern Recognition ,2000 : 18-25.
  • 9HILLMAN P, HANNAH J, RENSHAW D. Alpha channel estimation in high resolution images and image sequences [ C ]. Proceedings of IEEE Computer Vision and Pattern Recognition, 2001 : 1063-1068.
  • 10JIAN S,JIAYA J,TANG C K,et al. Poisson matting[J]. ACM Transaction on Graphics,2004,23 (3):315-321.

同被引文献119

引证文献10

二级引证文献117

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部