期刊文献+

Eigenvalue Problem of Doubly Stochastic Hamiltonian Systems with Boundary Conditions 被引量:1

Eigenvalue Problem of Doubly Stochastic Hamiltonian Systems with Boundary Conditions
下载PDF
导出
摘要 In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly. In this paper, we investigate the eigenvalue problem of forward-backward doubly stochastic dii^erential equations with boundary value conditions. We show that this problem can be represented as an eigenvalue problem of a bounded continuous compact operator. Hence using the famous Hilbert-Schmidt spectrum theory, we can characterize the eigenvalues exactly.
出处 《Communications in Mathematical Research》 CSCD 2009年第1期30-36,共7页 数学研究通讯(英文版)
基金 The NSF (10601019 and J0630104) of China Chinese Postdoctoral Science Foundation and 985 Program of Jilin University.
关键词 doubly stochastic Hamiltonian system eigenvalue problem spectrum theory doubly stochastic Hamiltonian system, eigenvalue problem, spectrum theory
  • 相关文献

参考文献14

  • 1Kushner, H. J., Necessary conditions for continuous parameter stochastic optimization problems, SIAM J. Control, 10(1972), 550-565.
  • 2Bismut, J. M., Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44(1973), 384-404.
  • 3Bismut, J. M., An introductory approach to duality in optimal stochastic control. SIAM Rev., 20(1)(1978), 62-78.
  • 4Haussmann, U. G., General necessary conditions for optimal control of stochastic system, Math. Programm. Stud., 6(1976), 34-48.
  • 5Bensoussan, A, Lectures on Stochastic Control, Lecture Notes in Math., Vol. 972, Nonlinear Filtering and Stochastic Control, Proceeding, Cortona, 1981.
  • 6Peng, S., A general stochastic maximum principle for optimal control problems, SIAM J. Control Optim., 28(1990), 966-979.
  • 7Antonelli, F., Backward-forward stochastic differential equations, Ann. Appl. Probab., 3(1993), 777-793.
  • 8Ma, J., Protter, P. and Yong, J., Solving forward-backward stochastic differential equations, Systems Control Lett., 14(1990), 55-61.
  • 9Hu, Y. and Peng, S., Solution of forward-backward stochastic differential equations, Probab. Theory Related Fields, 103(1995), 273-283.
  • 10Peng, S. and Wu, Z., Fully coupled forward-backward stochastic differential equations and applications to optimal control, SIAM J. Control Optim., 37(1999), 825-843.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部