期刊文献+

基于SVM分类机的一种DNA序列判别方法 被引量:3

A Classification Method of DNA Sequence Based on Support Vector Machine
下载PDF
导出
摘要 针对DNA序列类别的分属问题,提出采用支持向量机(Support Vector Machine,SVM)的方法进行分类。根据SVM分类器的要求建立特征属性空间,首先由每个DNA中4个碱基的含量得到4个特征属性,然后在此空间中扩充DNA序列长度的属性,最后根据SVM分类器对已知的DNA分类样本做训练得到分类超平面。利用此超平面检测所要分类的DNA序列,实验结果表明这种方法具有很好的分类精度。 A new classification method of DNA sequence based on SVM was presented. The feature attribute space was established according to requirement of SVC. At first, four feature attributes were built by content of DNA's four bases. By increasing length attribute of DNA sequence in the space to extent the feature attribute space. Finally, the classification of hyperplane was obtained on the basis of available samples training by using SVC in the feature attribute space. The DNA sequence to be classified was verified by the hyperplane. The results show that the classification method accuracy is very good.
出处 《安徽理工大学学报(自然科学版)》 CAS 2009年第1期58-62,共5页 Journal of Anhui University of Science and Technology:Natural Science
基金 国家自然科学基金资助项目(10501009) 安徽财经大学青年基金资助项目(ACKYQ0843ZC)
关键词 SVM DNA分类 特征属性空间 分类超平面 SVM classification of DNA feature attribute space classification hyperplane
  • 相关文献

参考文献5

二级参考文献30

  • 1胡懋智,古红英.各种不同类型的支持向量机及其性能比较分析[J].计算机工程与应用,2005,41(12):37-40. 被引量:8
  • 2白亮,老松杨,胡艳丽.支持向量机训练算法比较研究[J].计算机工程与应用,2005,41(17):79-81. 被引量:15
  • 3陆波,尉询楷,毕笃彦.支持向量机在分类中的应用[J].中国图象图形学报,2005,10(8):1029-1035. 被引量:23
  • 4CristianiniN Shawe-TaylorJ 李国正译.支持向量机导论[M].北京:电子工业出版社,2004..
  • 5Kozak M. Initiation of translation in prokaryotes and eukaryotes. Gene, 1999, 234: 187-208.
  • 6Burge C and Karlin S. Prediction of complete gene structures in human genomic DNA. J Mol Biol, 1997, 268(1): 78-94.
  • 7Pedersen AG. and Nielsen H. Neural network prediction of translation initiation sites in eukaryotes: perspectives for EST and genome analysis. In Proceeding of the Fifth International Conference on Intelligent System for Molecular Biology. Menlo Park, USA: AAAI Press, 1997: 226-233.
  • 8Zien A, Ratsch G, Mika S, Scholkopf B, Lengauer T and Muller KR. Engineering support vector machine kernels that recognize translation initiation sites. Bioinformatics, 2000, 16(9): 799-807.
  • 9Liu Huiqing, Han Hao, Li Jinyan and Limsoon Wong. Using Amino Acid Patterns to Accurately Predict Translation Initiation Sites. In Silico Biology, 2004, 4: 255-269.
  • 10Tzanis G, Berberidis C, Alexandridou A and Vlahavas I. Improving the accuracy of classifiers for the prediction of translation Initiation sites in genomic sequences. The 10^th Panhellenic Conference on lnformatics (Pcr2005), Volos, in Greece, 2005, 11: 426-436.

共引文献4

同被引文献25

  • 1徐启华,师军.基于支持向量机的航空发动机故障诊断[J].航空动力学报,2005,20(2):298-302. 被引量:54
  • 2张远芳,慈军,肖俊.灰色关联优势分析在冻土中的应用[J].水利与建筑工程学报,2006,4(1):12-14. 被引量:10
  • 3乔明艳,李全斌.对生物化学中氨基酸分类有关问题的讨论[J].卫生职业教育,2006,24(23):153-154. 被引量:4
  • 4王学武.眼睛梯度特征的人脸检测及Fisher人脸识别技术的应用[D].湘潭:湘潭大学图书馆,2006.
  • 5ATIYAH M. Mathematics: frontiers and perspectives I-M]. Provi- dence: AMS, 2000 : 43-50.
  • 6中国工业与应用数学学会.2000年全国大学生数学建模竞赛A题[EB/0L].[2012-09-20]http://www.mcm.edu.cn/2000.
  • 7刘瑞玉.现生甲壳动物fCRUSTACEA)最新分类系统[M]//中国甲壳动物学会.甲壳动物学会论文集,北京:科学出版社,2003:78-88.
  • 8Niijima S, Kuhara S. Gene subset selection in kernel- induced feature space[J]. Pattern recognition letters, 2006, 27(16): 1884-1892.
  • 9Chen Z, Li J, Wei L, et al. Multiple-kernel SVM based multiple-task oriented data mining system for gene expression data analysis[J]. Expert Systems with Applica- tions, 2011, 38(10): 12151-12159.
  • 10Haykin S, Network N. A comprehensive foundation [J]. Neural Networks, 2004, 2.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部