期刊文献+

具有延伸表面的驻点流动和传热问题的级数解 被引量:14

Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method
下载PDF
导出
摘要 研究了在延伸表面上不可压缩二维驻点流动的动量和热量传输问题.通过一系列相似变换把轴对称和平面二维驻点流的控制方程组转化为常微分方程组,利用同伦分析方法求得了速度分布和温度分布的级数解.结果表明,当主流流速大于平面延伸的速度时,就形成了一个边界层,而当主流流速小于平面延伸的速度时,却形成一个反边界层.通过图形和表分析各个物性参数对速度边界层和温度边界层的影响. The steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching sheet whose velocity is proportional to the distance from the slit is concerned. The governing system of partial differential equations was first transformed into a system of dimensionless ordinary differential equations. The analytical solutions for the velocity distribution and dimensionless temperature profiles were obtained for the various values of the ratio of flee stream velocity and stretching velocity, Prandtl number, Eckert number and dimensionality index in the series forms with the help of homotopy analysis method(HAM). It is shown that a boundary layer is formed when the free stream velocity exceeds the stretching velocity and an inverted boundary layer is formed when the free stream velocity is less than the stretching velocity. Graphs are plotted to discuss the effects of different parameters.
出处 《应用数学和力学》 CSCD 北大核心 2009年第4期432-442,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(50476083)
关键词 边界层 热传导 驻点 延伸表面 同伦分析法 boundary-layer heat transfer stagnation point stretching sheet homotopy analysismethod
  • 相关文献

参考文献18

  • 1Crane L I. Flow past a stretching plate[ J]. J Appl Mech Phys (ZAMP), 1970,21:545-657.
  • 2Brady J F, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity-an exact solution to the Navier-Stokes equations with reverse flow[J]. J Fluid Mech, 1981,112:127-150.
  • 3Jacobi A M. A scale analysis approach to the correlation of continuous moving sheet (backward boundary layer ) forced convective heat transfer[ J]. J Heat Trans- TASME, 1993,115 ( 4 ) : 1058-1061.
  • 4Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[ J ]. Can J Chem Eng, 1977,55:744-746.
  • 5Hussaini M Y, Laldn W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[ J ] . SIAM J Appl Math, 1987,47 (4):699-709.
  • 6McLeod J B, Rajagopal K R. On the uniqueness of flow of a Navier-stokes fluid due to a stretching boundary[ J]. Arch Ratl Mech Anal, 1987,98(4) :385-393.
  • 7Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal Appl , 1988,135(2) : 568-580.
  • 8Riley N, Weidman P D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary[J]. SIAM J Appl Math, 1989,49(5) : 1350-1358.
  • 9Mahapatra T R, Gupta A S. Heat transfer in stagnation-point flow towards a stretching sheet[J]. Heat and Mass Transfer,2002,38(6) :517-521.
  • 10Khan S K. Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink,suction/blowing and radiation[ J]. Int J Heat Mass Transfer,2006,49(3-4):628-639.

同被引文献91

引证文献14

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部