摘要
研究了一类正倒向重随机微分方程,其涵盖了以前的包括随机Hamilton系统的很多情况.通过连续性方法,在较弱的单调条件下得到了其解的存在唯一性结果.然后研究了正倒向重随机微分方程的解依赖于参数的连续性和可微性.
A general type of forward-backward doubly stochastic differential equations ( FBDSDEs in short ) was studied, which extends many important equations well studied before, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness results for measurable solutions were established by means of a method of continuation. Furthermore the continuity and differentiability of the solutions of FBDSDEs depending on parameters were discussed.
出处
《应用数学和力学》
CSCD
北大核心
2009年第4期484-494,共11页
Applied Mathematics and Mechanics
基金
国家自然科学基金资助项目(10771122)
山东省自然科学基金资助项目(Y2006A08)
国家重点基础研究发展计划(973计划
2007CB814900)
关键词
正倒向重随机微分方程
连续性方法
H-单调
forward-backward doubly stochastic differential equations
method of continuation
Hmonotone