期刊文献+

一般正倒向重随机微分方程的解 被引量:3

Solutions of General Forward-Backward Doubly Stochastic Differential Equations
下载PDF
导出
摘要 研究了一类正倒向重随机微分方程,其涵盖了以前的包括随机Hamilton系统的很多情况.通过连续性方法,在较弱的单调条件下得到了其解的存在唯一性结果.然后研究了正倒向重随机微分方程的解依赖于参数的连续性和可微性. A general type of forward-backward doubly stochastic differential equations ( FBDSDEs in short ) was studied, which extends many important equations well studied before, including stochastic Hamiltonian systems. Under some much weaker monotonicity assumptions, the existence and uniqueness results for measurable solutions were established by means of a method of continuation. Furthermore the continuity and differentiability of the solutions of FBDSDEs depending on parameters were discussed.
出处 《应用数学和力学》 CSCD 北大核心 2009年第4期484-494,共11页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10771122) 山东省自然科学基金资助项目(Y2006A08) 国家重点基础研究发展计划(973计划 2007CB814900)
关键词 正倒向重随机微分方程 连续性方法 H-单调 forward-backward doubly stochastic differential equations method of continuation Hmonotone
  • 相关文献

参考文献15

  • 1Pardoux E, Peng S G. Adapted solution of a backward stochastic differential equation[ J]. Systems Control Letters, 1990,14( 1 ) : 55-61.
  • 2El Karoui N, Peng S G, Quenez M C. Backward stochastic differential equations in finance[ JJ. Mathematical Finance, 1997,7( 1 ) : 1-71.
  • 3Ma J, Yong J M. Forward-Backward Stochastic Differential Equations and Their Applications[ M ]. Notes in Mathematics,1702,Berlin: Springer, 1999.
  • 4Antonelli F. Backward-forward stochastic differential equations[ J]. 7he Annals of Applied Probability, 1993,3(3) :777-793.
  • 5Ma J, Protter P, Yong J M. Solving forward-backward stochastic differential equations explicifly---a four step scheme[ J ]. Probab Theory Related Fields, 1994,98(2) :339-359.
  • 6Hu Y, Peng S G. Solution of forward-backward stochastic differential equations[ J ]. Probab Theory Rdoted Fields, 1995,103(2) : 273-283.
  • 7Peng S G, Wu Z. Fully coupled forward-backward stochastic differential-equations and applications to optimal control[ J ]. SIAM J Control Optim, 1999,37 ( 3 ) : 825- 843.
  • 8Yong J M. Finding adapted solutions of forward-backward stochastic differential equations---method of continuation[J]. Probab Theory Related Fields, 1997,107(3) :537-572.
  • 9Peng S G, Shi Y F. Infinite horizon forward-backward stochastic differential equations[ J]. Stochastic Processes and Their Applications, 2000,85( 1 ) : 75-92.
  • 10Peng S G. Problem of eigenvalues of stochastic Hamiltonian systems with boundary conditions[ J]. Stochastic Processes and Their Applications, 2000,88(2) : 259-290.

同被引文献8

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部