期刊文献+

并行计算解决部队铁路梯队装载NP问题应用研究 被引量:1

Application Research of Parallel Computing in Resolving the Military Railway Echelon Loading NP Problem
下载PDF
导出
摘要 梯队装载问题是铁路军事运输中的典型NP问题。在分析铁路军事运输梯队装载问题的基础上,提出以长度为基本数据,以军列换长最小和使用车辆总数最少为目标的装载优化模型,证明了该问题是NP完全问题。针对普通计算机求解梯队装载问题计算能力不足的实际,引入并行计算技术,用并行全枚举法进行求解数学模型。最后通过实例分析,验证了算法的可行性和有效性。 Echelon loading problem is a typical NP problem in military railage. Based on analyzing the echelon loading problem in military railage, this paper proposes a loading optimization model based on length, with the total length of train and total vehicular amount as optimization target. The problem is proved to be a NP - complete problem. Considering to the computing disability of common PC, parallel computing is introduced, and a parallel algorithm of full permutation is used to solve this model. In the end, an experiment is performed so as to show the feasibility and effectiveness of the algorithm.
出处 《军事交通学院学报》 2009年第2期9-12,共4页 Journal of Military Transportation University
关键词 并行计算 梯队装载 NP完全问题 parallel computing echelon loading NP - complete problem
  • 相关文献

同被引文献19

  • 1井祥鹤,周献中,徐延勇,陈志伟.按照装备编组平车装载问题的混合型遗传算法[J].系统仿真学报,2006,18(6):1705-1707. 被引量:2
  • 2井祥鹤,周献中,徐延勇.多型号平车装载问题的混合遗传算法[J].铁道学报,2006,28(6):10-15. 被引量:8
  • 3陈世哲,刘国栋,浦欣,浦昭邦,胡涛,刘宛予.基于优势遗传的自适应遗传算法[J].哈尔滨工业大学学报,2007,39(7):1021-1024. 被引量:31
  • 4铁道部.铁路货物装载加固规则[M].北京:中国铁道出版社,2006.
  • 5HOCHBAUM D,et al. Approximation Algorithms for NP-Hard Problems[M], Boston:PWS Publishing,1996 :46-93.
  • 6Andrea Lodi,Silvano Martello,Daniele Vigo. Approxima-tion Algorithms for the Oriented Two-dimensional BinPacking Problem[J]. European Journal of Operational Re-search, 1999, 112(1):158-166.
  • 7GAREY M R, JOHNSON D S. Computer and Intractabili-ty: A guide to the Theory of NP-Completeness[M]. NewYork: Freeman, 1979 : 16-20.
  • 8佚名.GJB3008—1997铁路军事运输装载加固基本要求[S].成都:西南交通大学出版社,1997.
  • 9HOLLAND J H. Adaptation in Natural and ArtificialSystem[M]. Massachusetts London:The MassachusettesInstitute of Technology Press, 1992 : 8-26.
  • 10GOLDBERG D E. Genetic Algorithms in Search, Optimi-zation and Machine Learning[M]. New Jersey: Addison-Wesley Press, 1989:80-98.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部