摘要
利用Avery-Peterson不动点定理,建立了一类奇异非线性p-Laplace方程在某些边值条件下至少存在三个正解的充分条件,推广和改进了现有文献的一些结果.
This paper deals with a class of singular p-Laplacian equation
(φp(u'(t)))'+a(t)f(t,u(t),u'(t))=0,0〈t〈1
subject to the following nonlinear boundary conditions
αφp(u(0))-βφp(u'(ξ))=0,γφp(u(1))+δφp(u'(η))=0,
where φp(x) = |x|^p-2x, p 〉 1. By using the Avery-Peterson fixed point theorem, sufficient conditions for the existence of at least three positive solutions to the boundary value problem mentioned above are established. The recent results are generalized and improved.
出处
《数学进展》
CSCD
北大核心
2009年第2期146-156,共11页
Advances in Mathematics(China)
基金
甘肃省高校研究生导师科研基金(No.0710-04,No.0810-03).