摘要
本文讨论L[0,1]^p(1〈p〈∞)空间函数的正系数多项式的倒数逼近Jackson型的估计问题,并证明了如下结论:设f(x)∈L[0,1]^p,1〈1〈p〈∞,且在(0,1)内改变l(l≥2)次符号,则存在0〈b1〈b2〈…〈b1〈1及一个n次多项式R(x)∈Πn(+)使得||f(x)-Πj=1^l(x-bj)/Pn(x)||L[0,1]^p≤Cp,b,lw(f,n^-1/2)L[0,1]^p,其中Πn(+)={pn(x):pn(x)=Σ0≤k+l≤n ak,lx^k(1-x)^l,ak,l≥0}为次数不超过n的正系数多项式的全体,b=min{|bj+1-bj|:j=1,2,…,l-1),Cp,b,l表示与p,b及l有关的正常数.
The present paper investigates the Jackson estimation of approximation by reciprocals of polynomials with positive coefficients in L[0,1]^p spaces for 1 〈 p 〈∞ and proves P that: if f(x) ∈L[0,1]^p, 1 〈 p 〈 ∞, change its sign exactly 1 ≥ 2 times in (0, 1), then there exist 0 〈 b1 〈 b2 〈 ... 〈 b1 〈 1 and a polynomial Pn(x) ∈ Πn(+) such that
||f(x)-Πj=1^l(x-bj)/Pn(x)||L[0,1]^p≤Cp,b,lw(f,n^-1/2)L[0,1]^p,
where Πn(+) indicates all polynomials of degree n with positive coefficients, b = min{|bj+1 - bj| : j = 1, 2,… , l - 1}, Cp,b,l is a positive constant only depending on p, b and l.
出处
《数学进展》
CSCD
北大核心
2009年第2期241-252,共12页
Advances in Mathematics(China)
基金
Supported by National and Zhejiang Provincial Foundation of China,Supported Partly the Ministry of Education Doctoral Foundation(Grant:No.10771188,No.Y606117,No.20060335133).