期刊文献+

L_([0,1])~P(1<p<∞)空间正系数多项式的倒数逼近的Jackson型估计(英文) 被引量:2

The Jackson Estimation of Approximation by Reciprocals of Polynomials With Positive Coefficients in L_([0,1])~P Spaces for 1<p<∞
原文传递
导出
摘要 本文讨论L[0,1]^p(1〈p〈∞)空间函数的正系数多项式的倒数逼近Jackson型的估计问题,并证明了如下结论:设f(x)∈L[0,1]^p,1〈1〈p〈∞,且在(0,1)内改变l(l≥2)次符号,则存在0〈b1〈b2〈…〈b1〈1及一个n次多项式R(x)∈Πn(+)使得||f(x)-Πj=1^l(x-bj)/Pn(x)||L[0,1]^p≤Cp,b,lw(f,n^-1/2)L[0,1]^p,其中Πn(+)={pn(x):pn(x)=Σ0≤k+l≤n ak,lx^k(1-x)^l,ak,l≥0}为次数不超过n的正系数多项式的全体,b=min{|bj+1-bj|:j=1,2,…,l-1),Cp,b,l表示与p,b及l有关的正常数. The present paper investigates the Jackson estimation of approximation by reciprocals of polynomials with positive coefficients in L[0,1]^p spaces for 1 〈 p 〈∞ and proves P that: if f(x) ∈L[0,1]^p, 1 〈 p 〈 ∞, change its sign exactly 1 ≥ 2 times in (0, 1), then there exist 0 〈 b1 〈 b2 〈 ... 〈 b1 〈 1 and a polynomial Pn(x) ∈ Πn(+) such that ||f(x)-Πj=1^l(x-bj)/Pn(x)||L[0,1]^p≤Cp,b,lw(f,n^-1/2)L[0,1]^p, where Πn(+) indicates all polynomials of degree n with positive coefficients, b = min{|bj+1 - bj| : j = 1, 2,… , l - 1}, Cp,b,l is a positive constant only depending on p, b and l.
出处 《数学进展》 CSCD 北大核心 2009年第2期241-252,共12页 Advances in Mathematics(China)
基金 Supported by National and Zhejiang Provincial Foundation of China,Supported Partly the Ministry of Education Doctoral Foundation(Grant:No.10771188,No.Y606117,No.20060335133).
关键词 多项式倒数逼近 Steklov函数 修正的Jackson核 H-L极大函数 approximation by reciprocal of polynomial the Steklov function, modified Jackson kernel H-L maximal function
  • 相关文献

二级参考文献1

共引文献11

同被引文献14

  • 1吴晓红,吴嘎日迪.Orlicz空间中正系数多项式倒数逼近[J].内蒙古大学学报(自然科学版),2012,43(4):337-341. 被引量:1
  • 2潘国荣,周莹,张德海.坐标转换模型在盾构姿态计算中的应用[J].大地测量与地球动力学,2006,26(3):84-87. 被引量:30
  • 3周卫,张彦彦,龙毅.图形坐标转换方法与实现[J].地球信息科学,2007,9(2):101-105. 被引量:9
  • 4G. C. Jones. New solutions for the geodetic coordinate transformation. Journal of Geodesy, 2002,76 ( 8 ) : 437- 446.
  • 5Karasik. Y.B. On implementation of adaptive local coor- dinate transformations in optical image processing. IEEE International conference, Austin, Tx1994.
  • 6Doytsher Y, Filin S, Ezra E. Transformation of data sets in a linear-based map conflation framework. Surv. Land Inf. Syst,2001,61 (3) : 165 - 175.
  • 7Vincenty T. Conforms] transformations between dissimilar plane coordinate systems. Surv. Map,1987, 47(4) : 271 - 274.
  • 8Lawson C L, Hanson R J. Solving least-square prob- lems. Englewood Cliffs, NJ : Prentice - Hall, 1974.
  • 9Hidetosi Takahasi. Complex function theory and numeri- cal analysis. RIMS, Kyoto Univ. , 41 (2005) : 979 ~ 988.
  • 10黄玉磊.GPS坐标转换中基于改进遗传算法求解病态方程的探讨:[学位论文].合肥:合肥工业大学,2007.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部