期刊文献+

STAR模型中退势单位根检验的小样本性质研究 被引量:3

The Small Sample Properties for De-trending Unit Root Tests in STAR Frameworks
下载PDF
导出
摘要 Kapetanios et al.(2003)和刘雪燕(2008)提出了ESTAR和LSTAR模型单位根检验的方法。本文将时间序列退势的OLS和GLS方法与他们提出的单位根检验方法结合,通过蒙特卡洛试验发现,在STAR模型中,对时间序列退势能不同程度的改善单位根检验的功效。若时间序列只存在非零均值,ESTAR模型中OLS退势存在优势;LSTAR模型,样本容量较小时(T<=50),OLS退势的优势较明显,样本容量较大(T>100)时,GLS退势具有了微弱的优势。若序列存在非零的均值和趋势,且样本容量较小时,LSTAR模型中GLS退势的优势较明显,ESTAR模型中OLS退势的优势较明显;样本容量较大时,LSTAR模型中二者功效都很高,ESTAR模型中GLS退势的优势较明显。 This paper focuses on the OLS and GLS detrending procedure for unit root tests against alternative hypothesis where the time series data under investigation follow either globally stationary LSTAR or ESTAR processes with deterministic components being present via Monte Carlo simulation. It is found that the proposed testing procedures have considerable power gains against existing nonlinear unit root tests recently proposed by Kapetanios et al. (2003) and Liu Xueyan(2008). If there is only concept, OLS is better than GLS in ESTAR. In LSTAR, when T 〈 50, OLS is better, but when T 〉 100, GLS is better. If there is concept and trend, when T〈50, GLS is better in LSTAR, but OLS is better in ESTAR. When T〉 100, GLS is better in ESTAR, but both are very good in LSTAR.
作者 刘雪燕
出处 《统计研究》 CSSCI 北大核心 2009年第3期102-108,共7页 Statistical Research
关键词 非线性 STAR模型 单位根检验 小样本性质 蒙特卡洛模拟 nonlinear STAR unit root test small sample properties Monte Carlo simulation
  • 相关文献

参考文献17

  • 1刘雪燕.非线性LSTAR模型中的单位根检验.2008,工作论文.
  • 2Balke, N. S., T.B. Fomby. Threshold cointegration[J]. International Economic Review, 1997(36) :627 - 645.
  • 3Dalki Maki. Variance ration tests for a unit root in the presence of a mean shift: small sample properties and an application to purchasing power parity[J]. Applied Financial Economics, 2006(16) :607 - 615.
  • 4Dickey, D. A., W. A. Fuller. Dstribution of the estimators for autoregressive time series with a unit root[J]. Journal of the American Statistical Association, 1979(74) :427 - 437.
  • 5Enders, W., C. W. J. Granger. Unit root test and asymmetric adjustment with an example using the term structure of interest rates[ J]. Journal of Business and Economic Statistics, 1998(16) :304 - 311.
  • 6Hansen, B.E. Inference when a nuisance parameter is not identified under the null hypothesis[J]. Eeonometriea, 1996(64) :414 - 430.
  • 7Kapetanios, G., A. Snell, Y. Shin. Testing for a unit root in the Nolinear STAR framework [ J ]. Journal of Econometrics, 2003 (112) : 359 - 379.
  • 8King, M.L. Robust tests for spherical symmetry and their application to least squares regression[J]. Annals of Statistics, 1980(8) : 1265 - 1271.
  • 9King, M.L. Towards a theory of point optimal testing[J]. Econometric Reviews, 1988(6) : 169 - 218.
  • 10Koop, G., M.H. Pesaran, S. Potter. Impulse response analysis in nonlinear multivariate Models[J]. Journal of Econometrics, 1996(74) : 119 - 147.

同被引文献9

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部