期刊文献+

基于语义的自适应个性化网页推荐 被引量:3

基于语义的自适应个性化网页推荐
下载PDF
导出
摘要 个性化网页推荐能高效、便捷地满足用户的信息需求。针对传统个性化技术的不足,提出基于语义的自适应个性化网页推荐方法,采用语义本体和用户兴趣偏移机制构建自适应的语义用户模型,并采用语义质心聚类技术提高推荐的准确率。实验结果表明,与其他推荐方法相比该算法具有更高的推荐准确率和召回率。 Personalized Web page recommendation can satisfy the users' demand for information efficiently and conveniently. In consideration of the deficiencies of the traditional personalized technologies, this paper proposes a self-adaptive personalized Web page recommendation method based on semantics. The method constructs a self-adaptive semantic user model by the use of semantic ontology and user' s interest drifting mechanism, and utilizes the centers of the semantic clusters to improve the precision of recommendation. Experimental results show that the new method has a higher precision and recall compared with the other recommendation method.
出处 《情报理论与实践》 CSSCI 北大核心 2009年第3期93-96,共4页 Information Studies:Theory & Application
基金 国家自然科学基金资助项目 项目编号:60573056
关键词 个性化服务 用户模型 本体 personalized service user model ontology
  • 相关文献

参考文献10

  • 1PRETCHNER A. Ontology based personalized search [ D ]. Lawrence, KS: University of Kansas, 1999.
  • 2曾春,邢春晓,周立柱.个性化服务技术综述[J].软件学报,2002,13(10):1952-1961. 被引量:394
  • 3BOLLACKER K D , LAWRENCE S , GILES C L. Discovery F relevance scientific literature on the Web[ J ].IEEE Intelligence Systems , 2000 , 15 (2) : 42-77.
  • 4邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 5GRUBER T R. A translation approach to portable ontology specifications [J]. Knowledge Acquisition, 1993, 5 (2).
  • 6GOMEZ-PEREZ A, MANZANO-MACHO. A survey of ontology learning methods and techniques [ R]. OntoWeb Deliverable, 2003.
  • 7KOYCHEV I, SCHWAB I. Adaptation to drifting user's intersects[ C ] //Proceedings ECML2000/MLnet workshop ML in the New Information Age, Barcelona, Spain: IEEE Press, 2000.
  • 8PAGE L, BRIN S, MOTWANI R, et al. The PageRank citation ranking: bringing order to the Web [D]. USA : Stanford University, 1998.
  • 9MAYNARD D, PETERS W, LI Y. Metrics for evaluation of ontology-based information extraction [ C] // Proc. of the EON 2006 Workshop, 2006.
  • 10BRANK J, MLADENIC D, GROBELNIK M. Gold standard based ontology evaluation using instance assignment [ C ] // Proc. of the EON 2006 Workshop, 2006.

二级参考文献59

  • 1Schafer J B, Konstan J A and Riedl J. Recommender systems in E-Commerce[C]. In: ACM Conference on Electronic Commerce(EC99), 1999, 158-166.
  • 2Breese J, Hecherman D and Kadie C. Empirical analysis of predictive algorithms for collaborative filtering[C]. In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence(UAI-98), 1998, 43-52.
  • 3Schafer J B, Konstan J A and Riedl J. E-Commerce recommendation applications [J]. Data Mining and Knowledge Discovery,2001, 5 (1-2): 115-153.
  • 4Goldberg D, Nichols D, Oki B M and Terry D. Using collaborative filtering to weave an information tapestry[J]. Communications of the ACM, 1992,35(12):61-70.
  • 5Resnick P, Iacovou N, Suchak M, Bergstrom P and Riedl J.Grouplens. an open architecture for collaborative filtering of netnews[C]. In: Proceedings of ACM CSCW' 94 Conference on Computer-Supported Cooperative Work, 1994,175-186.
  • 6Shardanand U and Maes P. Social information filtering: algorithms for automating ''Word of Mouth'' [C]. In Proceedings of ACM CHI' 95 Conference on Human Factors in Computing Systems, 1995, 210-217.
  • 7Hill W, Stead L, Rosenstein M and Furnas G. Recommending and evaluating choices in a virtual community of Use[C]. In:Proceedings of CHI' 95, 1995,194-201.
  • 8Sarwar B, Karypis G, Konstan J and Riedl J. Item-based collaborative filtering recommendation algorithms[C]. In:Proceedings of the Tenth International World Wide Web Conference, 2001,285-295.
  • 9Chickering D and Hecherman D. Efficient approximations for the marginal likelihood of bayesian networks with hidden variables[J]. Machine Learning, 1997, 29, 181-212.
  • 10Dempster A, Laird N and Rubin D. Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society, 1977, 38(1): 1-38.

共引文献532

同被引文献41

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部