期刊文献+

一种改进海面风速反演的分类神经网络方法 被引量:3

AN IMPROVED ALGORITHM FOR SEA SURFACE WIND SPEED RETRIEVAL OF A CLASSIFIED NEURAL NETWORK
下载PDF
导出
摘要 为了提高使用SSM/I资料反演全球海面风速的精度,发展了一个新型的神经网络方法。在这个方法中,使用高风速、中、低风速状态和天气状态分类的方法分别训练神经网络,然后根据其类别的不同使用不同的神经网络计算风速。此方法较好地去除了由于高风速和云天天气状态下训练样本数据的缺少所产生的误差,改进了在高风速状态下反演风速值比实际风速偏低的情况,使得反演的高风速值被校正到了正常位置。本方法反演海面风速的值与浮标实测风速值之间的均方根误差达到1.60m/s。 A new neural network algorithm is developed to improve the retrieval precision of the global sea surface wind speed from the SSM/I brightness data. At first, the data in different conditions, such as high-speed and low-speed winds, and clear and cloudy weather, are used to train different neural networks. Then these neural networks are used in- dependently to retrieve the sea surface wind speed. Compared with the buoy wind, the RMS (root mean square) error of the retrieving is about 1.60m/s. This method reduces the bias resulted from the lack of quality data in high-speed wind, and cloudy weather on the neural network algorithm.
出处 《海洋与湖沼》 CAS CSCD 北大核心 2009年第2期122-128,共7页 Oceanologia Et Limnologia Sinica
基金 国家863计划资助项目,2001AA633060号 国家自然科学基金资助项目,40276050号
关键词 神经网络 SSM/I资料 海面风速 Neural network, SSM/I data, Sea surface wind speed
  • 相关文献

参考文献10

  • 1孟雷,何宜军,伍玉梅.基于SSM/I数据的神经网络方法反演海面风速[J].高技术通讯,2006,16(7):763-770. 被引量:7
  • 2Bates J J, Wick G A, Got.tschall C C, 2000. Passive microwave remote sensing of wind direction using SSM/I data. IEEE Trans Geosci Remote Sensing, 38:823--837
  • 3Goodbedet M A, Swift M A, Wilkson J C, 1989. Remote sensing of ocean surface winds with the special sensor microwave/imager. Journal of Geophysics Research, 94:14547-- 14555
  • 4Goodberlet M A, Swift M A, 1992. Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions. IEEE Trans Geosci Remote Sensing, 30:1076--1077
  • 5Krasnopolsky V, Gemmill W H, Breaker L C, 2000. A neural network multiparameter algorithm for SSM/I ocean retrievals: comparisons and validations. Remote Sensing of Environment, 73:133--142
  • 6Stogryn A P, Butler C T, Bartolac T J, 1994. Ocean surface wind retrievals from special sensor microwave imager data with neural networks. Journal of Geophysics Research, 99:981-- 984
  • 7Thiria S C Mejia, Badran F, Crepon M, 1993. A neural network approach for modeling nonlinear transfer function: application for wind retrieval from spaceborn scatterometer data. J Geophys Res, 88:22827--22841
  • 8Wentz F J, 1992. Measurement of oceanic wind vector using satellite microwave radiometers. IEEE Trans Geosci Remote Sensing, 30:960--972
  • 9Wentz F J, 1997. A well calibrated ocean algorithm for SSM/I. J Geophys Res, 102:8703--8708
  • 10Wick G A, Bates J J, Gottschall C C, 2000. Observational evidence of a wind direction signal in SSM/I passive microwave data. IEEE Trans Geosci Remote Sensing, 38(2): 823--837

二级参考文献15

  • 1Wentz F J.User's manual of SSM/I antenna temperature tapes,RSS technical report 120191.1101 College Ave.,suite 220,SANTA ROSE,CA 95404:Remote Sensing Systems,1991.3-4
  • 2Goodberlet M A,Swift M A,Wilkson J C.Remote sensing of ocean surface winds with the special sensor microwave/imager.Journal of Geophysics Research,1989,94:14547-14555
  • 3Goodberlet M A,Swift M A.Improved retrievals from the DMSP wind speed algorithm under adverse weather conditions.IEEE Transactions on Geoscience and Remote Sensing,1992,30:1076-7077
  • 4Petty G W.A comparison of SSM/I algorithms for the estimation of surface wind.In:Proceedings shared processing network,DMSP SSM/I algorithm symposium.Monterrey,CA,1993.8-10
  • 5Wentz F J.Measurement of oceanic wind vector using satellite microwave radiometers.IEEE Transactions on Geoscience and Remote Sensing,1992,30(5):960-972
  • 6Thiria S C Mejia,Badran F,Crepon M.A neural network approach for modeling nonlinear transfer function:application for wind retrieval from spacebom scatterometer data.Journal of Geophysics Research,1993,88:22827-22841
  • 7Stogryn A P,Butler C T,Bartolac T J.Ocean surface wind retrievals from special sensor microwave imager data with neural networks.Journal of Geophysics Research,1994,99:981-984
  • 8Krasnopolsky V,Gemmill W H,Breaker L C.A neural network multiparameter algorithm for SSM/I ocean retrievals:comparisons and validations.Remote Sensing of Environment,2000,73:133-142
  • 9Meissner T,Wentz F J.A radiative transfer model function for 85.5 GHz special sensor microwave imager ocean brightness temperatures.Radio Science,2003,38(4):8066
  • 10Wick G A,Bates J J,Gottschall C C.Observational evidence of a wind direction signal in SSM/I passive microwave data.IEEE Transactions on Geoscience and Remote Sensing,2000,38(2):823-837

共引文献6

同被引文献40

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部