期刊文献+

γ-分泌酶在神经干细胞分化过程中的调节作用

Regulatory effects of gamma-secretase in neural stem cell differentiation
下载PDF
导出
摘要 背景:Notch信号通路在神经干细胞分化过程中起着关键作用,而γ-分泌酶是Notch信号通路调节的核心环节。目的:对神经干细胞分化过程中γ-分泌酶的活性、酶解产物Notch胞内段的生成量以及活性中心早老素1的表达进行检测。设计、时间及地点:细胞学基因水平检测,于2008-10/2009-01在山西医科大学生物化学与分子生物学实验室完成。材料:清洁级胚龄15d的BALB/c胎鼠由中国药品生物制品检定所提供,质粒Notch1△E-GVP和MH100由瑞典斯德哥尔摩诺贝尔医学学会的Urban Lendahl教授惠赠,荧光素酶质粒pRL-CMV为Promega公司产品。方法:体外分离培养胎鼠脑皮质神经干细胞,传至第5代后,按5×104/cm2密度接种到24孔板,每孔转染200ng MH100,100ng Notch1△E-GVP和2ng pRL-CMV质粒。主要观察指标:利用Gal4-VP16/UAS系统和双荧光素酶报告基因系统测定神经干细胞分化过程中γ-分泌酶的活性;通过Western blot技术检测酶解产物Notch胞内段的生成量;采用实时荧光定量PCR法测定γ-分泌酶活性中心早老素1mRNA的表达。结果:在γ-分泌酶抑制剂DAPT作用下,γ-分泌酶活性呈剂量依赖性降低,与对照组相比,0.1μmol/L DAPT即可对γ-分泌酶活性产生明显的抑制作用(P<0.05),至50μmol/L DAPT时γ-分泌酶活性降低近100倍(P<0.001)。Notch胞内段的生成量也同步减少,与DAPT抑制γ-分泌酶活性呈剂量依赖性的结果一致。与对照组相比,早老素1mRNA表达水平经0.1μmol/L DAPT干预后开始升高,并随着DAPT浓度增加而逐渐升高。结论:神经干细胞分化过程中,γ-分泌酶抑制剂干预后γ-分泌酶活性与酶解产物生成量呈剂量依赖性降低,活性中心基因表达则呈反馈性的同步增高。 BACKGROUND: Notch signaling pathway plays an important role in the differentiation of neural stem cells (NSCs), while y-secretase is the key element in the accommodation of Notch signaling pathway. OBJECTIVE: To detect the activity, enzymatic product Notch expression and presenilin 1 expression of γ-secretase during NSC differentiation. DESING, TIME AND SETTING: The cytology, gene study was performed at the Laboratory of Biochemistry and Molecular Biology, Shanxi Medical University from October 2008 to January 2009. MATERIALS: Clean BALB/c fetal mice at embryonic day 15 were obtained from National Institute for the Control of Pharmaceutical and Biological Products. Plasmids Notch1 △E-GVP and MH100 were gifted by Professor Urban Lendahl from the Swedish Medical Association, Stockholm, Sweden. Luciferase plasmid pRL-CMV was purchased from Promega Company. METHODS: NSCs from fetal rat cerebral cortex were in vitro isolated. At the fifth passage, NSCs were incubated in a 24-well plate at a density of 5 × 10^4/cm2. NSCs in each well were transfected with 200 ng MH100, 100 ng Notch1 △E-GYP and 2 ng pRL-CMV plasmid. MAIN OUTCOME MEASURES: The activity of γ-secretase was detected by Ga14-VP16/UAS system and Dual Luciferase Reporter Assay System. The productions of the intracellular domain of Notch1 (NICD) were analyzed by Western blot assay. Presenilin 1 mRNA expression was determined by Real-Time fluorescent quantitative PCR. RESULTS: y-secretase inhibitor DAPT decreased luciferase activities in a dose-dependent manner. Compared with the control group, 0.1 μmol/L DAPT could significantly inhibit y-secretase activity (P 〈 0.05). At 50 μ mol/L DAPT, y-secretase activity could decrease about 100 times (P 〈 0.001 ). DAPT inhibited the productions of NICD, which showed a dose-dependent relation with inhibition of γ-secretase activity. Compared with the control group, Presenilin 1 mRNA expression began to increase following 0.1 μmol/L DAPT intervention, and gradually increased with the increased DAPT concentration. CONCLUSION: Following γ-secretase inhibitor DAPT intervention, γ-secretase activity and enzymatic product decreased with dose-dependent relationship, but gene expression increased.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2009年第14期2727-2732,共6页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家科技支撑计划(2007BA107A02) 山西省归国留学基金(2008-48)~~
  • 相关文献

参考文献31

  • 1de la Pompa JL, Wakeham A, Correia KM, et al. Conservation of the Notch signalling pathway in mammalian neurogenesis.Development.1997; 124(6):1139-1148.
  • 2Mizutani K, Yoon K, Dang L, et al. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors.Nature.2007; 449(20):351-356.
  • 3Nagao M, Sugimori M, Nakafuku M. Cross Talk between Notch and Growth Factor/Cytokine Signaling Pathways in Neural Stem Cells. Molecular and cellular biology.2007; 27(11 ):3982-3994.
  • 4Shimojo H, Ohtsuka T, Kageyama R. Oscillations in notch signaling regulate maintenance of neural progenitors.Neuron.2008;58(1 ): 52-64.
  • 5Mumm JS, Schroeter EH, Saxena MT, et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch 1. Molecular Cell. 2000; 5(2): 197-206.
  • 6Struhl G, Adachi A. Nuclear access and action of notch in vivo. Cell.1998; 93(4):649-660.
  • 7Jarriault S, Brou C, Logeat F, et al. Signalling downstream of activated mammalian Notch.Nature.1995;377(6547):355-358.
  • 8Schroeter EH, Kisslinger JA, Kopan R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature. 1998;393(6683):382-386.
  • 9De Strooper B, Annaert W, Cupers P, et al. A presenilin-l-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature. 1999;398(6727): 518-522.
  • 10Tagami S, Okochi M, Yanagida K, et al. Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-l. Molecular and Cellular Biology. 2008; 28(1):165-176.

二级参考文献14

  • 1Liu Y, Templeton D M. Cadmium activates CaMK-Ⅱ and initiates CaMK-Ⅱ-dependent apoptesis in mesangial cells. FEBS Letters, 2007, 581(7): 1481 -1486
  • 2Okamoto K, Narayanan R, Lee S H, et al. The role of CaMKⅡ as an F-actin-bundling protein crucial for maintenance of dendritic spine structure. PNAS, 2007, 104 : 6418 - 6423
  • 3Bain J R. , Schisler J C, Takeuchi K, et al. An adenovirus vector for efficient RNA interference - mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes, 2004, 53:2190-2194
  • 4Fujita Y, Izawa Y, Ali N, et al. Pramipexole protects against H2O2-induced PC12 cell death. Naunyn-Schmiedeberg's Arch Pharmacol, 2006, 372 : 257 - 266
  • 5Brynczka C, Perfetti B A. Nerve growth factor potentiates p53 DNA binding but inhibits nitric oxide-induced apoptosis in neuronal PC12 cells. Neurochem Res, 2007, 32(9):1573 - 1585
  • 6Hui H, Wright C, Perfetti R. Glucagon-like peptide 1 induces differentiation of islet duodenal homeobox-1 - positive pancreatic ductal cells into insulin-secreting cells. Diabetes, 2001, 50:785 -796
  • 7Schmitt J M, Wayman G A, Nozaki N, et al. Calcium activation of ERK mediated by calmodulin kinase Ⅰ. J Biol Chem, 2004, 279 (23) : 24064 - 24072
  • 8Griffith L C, Lu C S, Sun X X. CaMKII, an enzyme on the move: regulation of temporospatial localization. Molecular interventions, 2003, 3 (7) : 386 - 403
  • 9Babcock A M, Standing D, Bullshields K. In vivo inhibition of hippocampal Ca^2+/calmodulin-dependent protein kinase Ⅱ by RNA interference. Mol Ther, 2005, 11 (6) : 899 - 905
  • 10Takeda K, Matsuzawa A, Nishitoh H, et all Involvement of ASK1 in Ca^2+ -induced p38 MAP kinase activation. EMBO Rep, 2004, 5(2): 161 -166

共引文献704

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部