期刊文献+

一种智能入侵检测系统设计与模拟实现 被引量:6

Design and Simulation of the System for Intelligent Intrusion Detection
原文传递
导出
摘要 针对目前大多数的入侵检测系统存在的局限性,提出一种较完善的入侵检测模型,将专家系统和神经网络技术同时应用于入侵检测系统中.设计专家系统模块检测已知攻击,设计神经网络模块实现未知攻击的检测,提高了检测准确性.同时在神经网络模块应用PCA方法降低入侵数据维数,提高检测效率.仿真实验验证,该设计能有效降低入侵检测系统的漏报率和误报率. Aimed at the limitation of most intrusion detection systems, this paper proposes a more perfect IDS, expert system and neural network are applied in IDS. Designed the ES module to detect the known attack, the ANN module detect the unknown attack. This can improve the rate of correction. Using the PCA to reduce the dimension of the data, it can improve the efficiency of the detection. The design reduces the rate of failure statement and misstatement by simulation.
出处 《数学的实践与认识》 CSCD 北大核心 2009年第6期162-169,共8页 Mathematics in Practice and Theory
关键词 入侵检测系统 专家系统 神经网络 特征提取 intrusion detection system expert system neural network feature extraction
  • 相关文献

参考文献10

  • 1Palade V, Howlett R J, Jain L C, et al. Automated knowledge acquisition based on unsupervised neural network and expert system paradigms[C]. Berlin Heidelberg: Springer-Verlag,2003. 134-140.
  • 2李旺,吴礼发,胡谷雨.分布式网络入侵检测系统NetNumen的设计与实现[J].软件学报,2002,13(8):1723-1728. 被引量:31
  • 3Lee S C, Heinbuch D V. Training a neural-network based intrusion detector to recognize novel attacks[J].IEEE Trans System, Man Cybern, Part A,2005,31(4) :294-299.
  • 4Kim H-S, S-D Cha. Efficient masquerade detection using SVM based on common command frequency in sliding windows [J]. IEICE Transactions on Information and Systems, 2004, E87-D (11 ) : 2446-2452.
  • 5Schonlau M, et al. Computer intrusion: Detecting masquerades[J]. Statistical Science, 2001,16 ( 1 ) : 58-74.
  • 6范明,孟小峰等译.数据挖掘概念与技术[M].机械工业出版社,2001,8:223-225.
  • 7http://kdd. ics. uci. edu/databases/kddcup99/kddcup99.html
  • 8Mukkamala S, Janoski G H, et al. Intrusion detection: Support vector machines and neural networks[C]. //Proceedings of the IEEE International Joint Conference on Neural Networks, Honolulu, USA, 2002, 1702- 1707.
  • 9Richard P Lippmann, Robert K. Cunningham, Improving intrusion detection performance using keyword selection and neural networks[J]. Computer Networks, 2000,34,597-603.
  • 10Craven M W, Shavlik J W. Extracting tree-structured representations of trained networks. In: Touretzky D, Mozer M, Hasselmo M, Eds[M]. Advances in Neural Information Processing Systems(Vol. 8), The MIT Press, Cambridge, MA, 1996,24-30.

二级参考文献4

  • 1[1]Allen, J., Christie, A., Fithen, W., et al. State of the practice of intrusion detection technologies. CMU/SEI-99-TR-028, 2000. http://www.sei.cmu.edu/publications/documents/99.reports/99tr028/99tr028abstract.html.
  • 2[2]Stevens, W.R. Unix Network Programming (Vol.1) Networking APIs: Sockets and XTI(2nd ed.). Prentice Hall PTR., 1998.
  • 3[3]Roesch, M. Snort-Lightweight Intrusion Detection for Networks. In: Proceedings of the USENIX LISA'99 Conference. http://www.usenix.org/events/lisa99/full_papers/roesch/roesch.pdf
  • 4[4]Denial of Service Attacks. http://www.cert.org/tech_tips/denial_of_service.html.

共引文献41

同被引文献32

引证文献6

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部