摘要
利用架设在念青唐古拉山南坡9个海拔高度(4300~5500m)的自动气象站一年(2006年8月1日-2007年7月31日)的实测数据,对山坡1.5m高度的气温和季风期(6-9月)降水随海拔梯度和时间的变化进行了分析。表明4300~4950m存在一个逆温带,逆温时间自10月至翌年4月。年逆温频率为11.5%(42天)。4300~5500m年平均气温直减率为0.61℃/100m;念青唐古拉山南坡季风期各月最大降水带都在海拔5100m。最大降水高度以下,山坡降水量递增率为4~7mm/100m,最大降水高度以上,降水递减率数值上为降水递增率的1.6~2.3倍。7月和8月降水量占季风期总降水量比例大于6月和9月。降水月内分配山坡上部总体较山坡下部均匀。降水主要发生在4:00-10:00以外的时间段,而大-中雨(3~14mm/h)主要发生在18:00-22:00。山坡强降水段相对集中在4650~5100m海拔高度。
Altitudinal and temporal distribution of surface based air temperatures and monsoon period precipitation were analysed, using an original data set, spanning Aug. 1, 2006 to Jul. 31, 2007, from 9 automated weather stations set up along an altitudinal gradient from 4300 to 5500 m a.s.l, on the southern slope of Nyainqentanglha Mountains, the Lhasa River basin. Surface based inversion was found typically during October to the following April. The annual inversion frequency was 11.5% (i.e. 42 days). The lapse rate of mean annual air temperature was 0.61℃/100m for the elevation interval of 4300-5500 m. Analysis on the precipitation indicated the presence of the maximum precipitation belt (MPB) at about 5100 m a.s.l, with an increasing rate of 4-7mm/100m below the MPB. The precipitation decreased at a rate of 1.6-2.3 times of the increasing rate over the MPB. The precipitation amounts in July and August were larger than those in June and September. The intra-month distributions of precipitation were generally more homogeneous for the upper hillslope than for the lower. The precipitation events generally occurred at any time except for 4:00-10:00, with the heavy rainfall(3-14mm/h) mainly occurring within 18:00-22:00. The larger precipitation events concentrated roughly between 4650 m a.s.l, and 5100 m a.s.l.
出处
《地理科学进展》
CSCD
北大核心
2009年第2期223-230,共8页
Progress in Geography
基金
973"我国冰冻圈动态过程及其对气候、水文和生态的影响机理与适应对策"(2007CB411503)
欧盟第六框架项目"BRAHMATWINN"(036952)
国家自然科学基金项目(40561002)
日本环境省项目“利用青藏高原实施温暖化的早期发现和早期预测”
中国科学院“百人计划”项目
关键词
青藏高原
山地气候
气温直减率
水热条件
降水梯度
Tibetan Plateau
mountain climate
temperature lapse rate
hydrothermal condition
precipitation gradient