期刊文献+

基于微粒群和子空间的离群数据挖掘算法研究 被引量:2

Outlier Mining Algorithm Based on Particle Swarm Optimization and Subspace
下载PDF
导出
摘要 传统的离群数据挖掘方法大多数是利用全局的观点看待离群数据,很难发现低维子空间中的偏移数据。利用微粒群算法(PSO)具有简单、容易实现并且没有许多参数需要调整等优势,提出了一种基于PSO和子空间的离群数据挖掘算法(OM-PSO)。该算法首先将子空间看作微粒,根据偏离数据所在子空间的稀疏系数,采用带有变异算子的PSO算法来搜索子空间,并将子空间中的数据看作为局部偏离数据,即离群数据;最后采用离散化的天体光谱数据作为数据集,实验结果验证了该算法的有效性。 Most methods of traditional outlier mining regard outliers from overall point of view, so it's difficulty to find bias data or outliers in subspace. An outlier mining algorithm based on particle swarm optimization and subspace was proposed by using the PSO algorithm' characteristics with implementing easily and a few adjustment parameters. The algorithm OM-PSO regards outlier subspace as particle swarm, and searches outlier subspaces with mutational PSO algorithm according to sparsity coefficient of subspace. Finally, the experiment results prove efficient and validity of the OM-PSO algorithm by taking the star spectra data from the LAMOST project.
出处 《系统仿真学报》 CAS CSCD 北大核心 2009年第7期1897-1900,1903,共5页 Journal of System Simulation
基金 国家自然科学基金项目(60573075) 山西省自然科学基金项目(2006011041)
关键词 离群数据 微粒群算法 子空间 稀疏系数 天体光谱数据 outliers particle swarm optimization subspace sparsity coefficient star spectrum
  • 相关文献

参考文献10

  • 1Knnor E, Ng R. Algorithms for mining distance-based outliers in large datasets [C]//Proc Of the 24th VLDB Conference. New York, USA: Morgan Kaufmarm, 1998: 392-403.
  • 2Barnett V, Lewis T. Outliers in statistical data [M]. New York, USA: John Wiley &Sons, 1994.
  • 3Preparata F, Shamos M. Computational Geometry: An Introduction [M]. USA: Springer-Verlag, 1988.
  • 4Sarawagi S, Agrnwal K, Megiddo N. Discovery-driven Exploration of OLAP Data Cubes [C]// Valencia: Proc of Int Conf Extending Database Technology (EDBT'98). LNCS 1377, Springer-Verlag, 1998: 168-182.
  • 5Breunig M, Kriegel H P, Ng R, et aL LOF: Identifying density-based local outlier [C]// Zytkow J M Rauch. Proc of the 3rd European Conference on Principles and Practice of knowledge Discovery in Databases. LNCS 1704, Prague, Czech: Springer, 1999: 262-270.
  • 6C Agarwal, P S Yu. An effective and efficient algorithm for high- dimensional outlier detection [J]. The International Journal on Very Large Data Bases (S1066-8888), 2005, 14(2): 211-221.
  • 7J Kennedy, R Eberhart. Particle swarm optimization. [C]// Proceedings of IEEE International Conference on Neural networks, NJ, WA Australia. USA: IEEE Service Center, 1995, IV: 1942-1948.
  • 8陈爱玲,杨根科,吴智铭.轧制计划的优化模型及其算法的应用研究[J].系统仿真学报,2006,18(9):2484-2487. 被引量:6
  • 9刘建成,蒋新华,吴今培.一种语言模型的精确学习方法[J].系统仿真学报,2006,18(6):1535-1537. 被引量:1
  • 10谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,24(5):126-129. 被引量:43

二级参考文献27

  • 1Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarm[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii, 2001. 94-100.
  • 2Shi Yuhui, Eberhart R. Parameter selection in particle swarm optimization[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. Washington DC,1998. 591-600.
  • 3Shi Yuhui, Eberhart R. Parameter selection in particle swarm optimization[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. 1998.591-600.
  • 4Angeline PJ. Evolutionary optimization versus particle swarm optimization: Philosophy and performance difference[A]. Proc of the 7th Annual Conf on Evolutionary Programming[C]. Gemany:Springer,1998. 601-610.
  • 5Ray T, Liew K M. A swarm with an effective information sharing mechanism for unconstrained and constrained single objective optimization problem[A]. Proc IEEE Int Conf on Evolutionary Computation[C]. Seoul,2001. 75-80.
  • 6Parsopoulos K E, Vrahatis M N. Recent approaches to global optimization problems through particle swarm optimization[J]. Natural Computing 2002, 1:235-306.
  • 7Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks, 1995. 1942-1948.
  • 8Suganhan P N. Particle swarm optimizer with neighbourhood operator[A].Proc of the Congress on Evolutionary Computation[C]. Washington DC,1999. 1958-1962.
  • 9Clerc M. The swarm and the queen: Towards a deterministic and adaptive particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C]. Washington DC,1999. 1951-1957.
  • 10Kennedy J. Stereotyping: Improving particle swarm optimization with cluster analysis[A]. Proc IEEE Int Conf on Evolutionary Computation[C] La JollaPerth, 2000. 1507-1512.

共引文献47

同被引文献28

  • 1谭瑛,高慧敏,曾建潮.求解整数规划问题的微粒群算法[J].系统工程理论与实践,2004,24(5):126-129. 被引量:43
  • 2李盛恩,王珊.封闭数据立方体技术研究[J].软件学报,2004,15(8):1165-1171. 被引量:25
  • 3蔡江辉,张继福.基于聚类的离群数据挖掘及应用[J].太原重型机械学院学报,2004,25(4):254-258. 被引量:2
  • 4KNNOR E, NG R. Algorithms for mining distance-based outliers in large datasets [ C ]//Proc of the 24th VLDB Conference. New York : Morgan Kaufmann, 1998 : 392-403.
  • 5HAN J W, KAMBER M. Data Mining Concepts and Techniques[ M ]. San Francisco:Morgan Kaufmann publishers,2001.
  • 6BARNETr V, LEWIS T. Outliers in statistical data[ M ]. New York :John Wiley and Sons, 1994.
  • 7PREPARATA F, SHAMOS M. Computational Geometry : An Introduction [ M ]. USA : Springer-Verlag, 1988.
  • 8SARAWAGI S, AGRNWAL K, MEGIDDO N. Discovery-driven Exploration of OLAP Data Cubes [ C ]//Valencia: Proc of Int Conf Extending Database Technology, 1998 : 168-182.
  • 9BREUNIG M, KRIGEGL H P, NG R T, SANDER J. LOF: Identifying density-based local outlier[ C ]//Zytkow J Med. Ranch Proc of the 3rd European Conference on Principles and Practice of knowledge Discovery in Databases. Prague:Springer, 1999:262-270.
  • 10AGARARWAL, YU P S. An effective and efficient algorithm for high-dimensional outlier detection [ J ]. The International Journal on Very Large Data Bases ,2005,14 ( 2 ) :211-221.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部